
Introduction to

Computer Science
Instructor: Qingsong Guo
School of Computer Science & Technology

http://abelgo.cn/cs101.html

CS101 Fall 2017

Think in Data: Data Storage
Bits, Data Representation, and
Binary System

Lecture 2, Lecture 3:
Welcome to the Digital World !

What types of data can you
recognize in your daily life?

10-9/17 CS101 3

Think in Data: Data Storage

02 Representing Information as Bit Patterns

03 The Binary System

01 Bits and Their Storage

05 Main Memory & Mass Storage

04 Storing Integers & Fractions

10-9/17 CS101 4

1.
Bits and Their Storage

Hardware Advances

Representing information as electrical signals led to
telegraph in mid-1800s (电报,电信号,电存储)
- needed device to control current flow
- telegraph clicker, relays, vacuum tubes

Magnetic storage - 1878 (磁介质,磁存储)
- magnetic tape, hard disk

Photography – end of 18th century (摄影术,光存储)
- based on principle that some chemicals change their

properties when exposed to light
- silver nitrate changes to metallic silver
- optical storage such as CD & DVD

Data storage relies on the following techniques
- Electronics (电), magnetics (磁), optics (光)

10-9/17 CS101 6

Bits and Bit Patterns

Bit
- Binary Digit (0 or 1)

Bit Patterns are used to represent information
- Numbers: positive integer, negative integer, fraction, etc.
- Text characters
- Images
- Sound
- And others

10-9/17 CS101 7

Switches(开关)

An open switch

in out

A closed switch

outin

0

0

0

1

outin

0

1

0

1

in out

10-9/17 CS101 8

Boolean Operations

Boolean operation
- An operation that manipulates one or more

true/false values and generate a true/false output

Specific operations
- AND
- OR
- XOR (exclusive or)
- NOT

10-9/17 CS101 9

The Boolean Operations

10-9/17 CS101 10

Logical Table or Truth Table (真值表)

AND (*, ∧)NOT/Negation (¬)

Q

0 0

0 1

0

1

0 1

P

P*Q

1

0

0

1

¬𝑃𝑃

XOR (⨁)

Q

0 1

1 0

0

1

0 1

P

P⨁ Q

OR(+, ∨)

Q

0 1

1 1

0

1

0 1

P

P+Q

10-9/17 CS101 11

Gates(逻辑门)

Gate: A device that computes a Boolean operation
- Often implemented as (small) electronic circuits
- Provide the building blocks from which computers are

constructed
- AND, OR, XOR (Exclusive OR) , NOT

VLSI (Very Large Scale Integration)
- Density of integration
- Integrate a huge number of gates into a Chip(芯片)

10-9/17 CS101 12

AND OR

XOR NOT

Gates and Their Computations

10-9/17 CS101 13

Logical Expression and XOR

10-9/17 CS101 14

𝐏 𝐐 ¬𝐏 ¬𝐐 ¬𝐏 ∗ 𝐐 𝐏 ∗ ¬𝐐 (¬𝐏 ∗ 𝐐) + (𝐏 ∗ ¬𝐐)

1 1 0 0 0 0 0

1 0 0 1 0 1 1

0 1 1 0 1 0 1

0 0 1 1 0 0 0

Logical expression of XOR

P⨁Q = (¬P ∗	Q)	+	(P	∗	¬Q)

Q

0 1
1 0

0
1

0 1

P

P⨁ Q

10-9/17 CS101 15

Truth Table For 1-bit Comparator

𝐏 𝐐 ¬𝐏 ¬𝐐 𝐏 ∗ 𝐐 ¬𝐏 ∗ ¬𝐐 (𝐏 ∗ 𝐐) + (¬𝐏 ∗ ¬𝐐)

1 1 0 0 1 0 1

1 0 0 1 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 1 1

10-9/17 CS101 16

Circuit For 1-bit Comparator

(𝐏 ∗ 𝐐) + (¬𝐏 ∗ ¬𝐐)

𝐏 ∗ 𝐐

¬𝐏 ∗ ¬𝐐

¬𝐐

¬𝐏

𝐐

𝐏

Flip-flops (触发器)

Flip-flop: A circuit built from gates that can store one
bit (binary digit) of data.
- One input line is used to set its stored value to 1
- One input line is used to set its stored value to 0
- While both input lines are 0, the most recently stored value

is preserved

10-9/17 CS101 17

Flip-flops
a

b

output

A black box model of Flip-flops

inputs

A Simple Flip-flop Circuit

Input

Input Output

10-9/17 CS101 18

0

1 ?

Place a 1 on the upper input

Since the output of OR is 1
and, in turn, the output of
AND is 1.1

1

10

The 1 from AND keeps the OR from
changing after the upper input returns to 0.

Setting the Output of a Flip-flop to 1

10-9/17 CS101 19

10-9/17 CS101 20

Setting the Output of a Flip-flop to 0

0

Place a 1 on the lower input

Since the output of AND
changes to 0 and, in turn, the
output of OR changes to 0.

1

1

10

The 0 from output keeps the AND from
changing after the lower input returns to 0.

1
0

0

0

Another Way to Construct a Flip-flop

Here is another way to construct a flip-flop. Please
explain why it can hold one bit of information by
you self. I will ask someone to explain it to me in the
next lecture.

10-9/17 CS101 21

2.
Representing Information as
Bit Patterns

Representing Text
Each character (letter, punctuation, etc.) is assigned a unique bit pattern.

ASCII (American Standard Code, ASS-kee)
- Uses patterns of 7-bits to represent most symbols used in

written English text
- Modern – uses 8-bit code, where last 128 characters are

dependent on manufacturer

ISO standard
- Uses patterns of 32-bits to represent most symbols used in

languages world wide – billions of characters

Unicode
- Both ASCII and ISO are originally designed for English, and

thus are deficiency for international use.
- Uses patterns of 8/16-bits to represent the major symbols

used in languages world wide
- UTF-8, UTF-16 - Unicode Transformation Format 8/16-bit

10-9/17 CS101 23

ASCII Table
Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr

0 0 000 NULL 32 20 040 Space 64 40 100 @ @ 96 60 140 ` `
1 1 001 Start of Header 33 21 041 ! ! 65 41 101 A A 97 61 141 a a
2 2 002 Start of Text 34 22 042 " " 66 42 102 B B 98 62 142 b b
3 3 003 End of Text 35 23 043 # # 67 43 103 C C 99 63 143 c c
4 4 004 End of Transmission 36 24 044 $ $ 68 44 104 D D 100 64 144 d d
5 5 005 Enquiry 37 25 045 % % 69 45 105 E E 101 65 145 e e
6 6 006 Acknowledgment 38 26 046 & & 70 46 106 F F 102 66 146 f f
7 7 007 Bell 39 27 047 ' ' 71 47 107 G G 103 67 147 g g
8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h
9 9 011 Horizontal Tab 41 29 051)) 73 49 111 I I 105 69 151 i i

10 A 012 Line feed 42 2A 052 * * 74 4A 112 J J 106 6A 152 j j
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k
12 C 014 Form feed 44 2C 054 , , 76 4C 114 L L 108 6C 154 l l
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M M 109 6D 155 m m
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n
15 F 017 Shift In 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p
17 11 021 Device Control 1 49 31 061 1 1 81 51 121 Q Q 113 71 161 q q
18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r
19 13 023 Device Control 3 51 33 063 3 3 83 53 123 S S 115 73 163 s s
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t
21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U U 117 75 165 u u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V V 118 76 166 v v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 121 79 171 y y
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [[123 7B 173 { {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 = = 93 5D 135]] 125 7D 175 } }
30 1E 036 Record Separator 62 3E 076 > > 94 5E 136 ^ ^ 126 7E 176 ~ ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ _ 127 7F 177 Del

asciichars.com10-9/17 CS101 24

Represent “Hello” in ASCII

“Hello”

Question:
What is the ASCII of “World”?

10-9/17 CS101 25

Question:
57 6F 72 6C 64
W o r l d

Representing Numeric Values

Binary notation
- Uses bits to represent a number in base two

Limitations of digital representations of numeric values
- Overflow – occurs when a value is too big to be represented
- Truncation – occurs when a value cannot be represented

accurately

10-9/17 CS101 26

1 1 0 1 1 0 11

How to represent fraction
1/3=0.3… with 8 bits

8 bits can represent 28=256
different integers

8 bits

Representing Other Types of Data

Representing images
- Bit map – representing an image as a collection of dots,

each of which is called a pixel
- RGB, etc.

Representing sound
- Sample the amplitude of the sound wave at regular intervals

and record it as time-series value
- MP3, MP4, etc.

10-9/17 CS101 27

3.
The Binary System

Numeral Systems (数字系统)

Decimal system (十进制)
- Arabic numerals: 0,1,2,3,4,5,6,7,8,9
- The traditional decimal system is

based on powers of ten

Others
- 12 (dozens, month/year), 24(hours/day), 60 (minutes/hour,
甲子/circle), 100(century), etc.

What types of numeral systems do you know?

Binary system (二进制)
- Binary number: 0, 1
- Octonary: 0-7, 3 bits of binary
- Hexadecimal: 0-9 A-F, 4 bits of binary

ÌR~
Campusvej 55, 5230 Odense M

H +45 4221 6223
B qingsongg@gmail.com

Õ http://imada.sdu.dk/ qguo/

Y≤Ão
9¶Wπ'f — °ó: ZÎ 2011.9 –– 2015.5
-˝∫⌘'f — °ó: UÎ 2008.9 –– 2011.7
-⌫'f⌃! — °ó: ,— 2003.9 –– 2007.7

*∫ÀÕ
,∫(9¶Wπ'fpf�°ó:˚;˚ZÎfM,(Yongluan Zhou YàÑ⌥¸↵€LZÎ∫
áv⇥vÜfl:pnì,ë°ó,Â 'pn⌅⌃⇥;ÅsËπ/æ°ÿ'˝Ñó’å˚fl
˘'pn€L—<�§í✏,åûˆ'⌃ê⇥

vyÓ
ÓM1⌘;¸Ñ$*vyÓ:

(1) ⌃⌃⌃⇤⇤⇤✏✏✏AAA°°°óóóÑÑÑ'''ƒƒƒ!!!vvvLLL⌅⌅⌅⌃⌃⌃⇠⇠⇠���: pnÑ®�ÿ�, ÇpnáåpnÑ⌃⇤Ñÿ�, ⇢
¸Ù$*ÕÅÓò:1.°óDêå�}Ñ�9M– pnáÑÿ�⇢�ó°óœ8⌅é«}�{
}Ñ∂�; 2.pn⌃⇤Ñÿ�⇢ ⇣�}�Ga⇥«}⇢ ⇣°óˆàŒ��qÕ˚fl�⇣
á, �{}⇢ ⇣%ÕÑDêj9⇥9npnÑÿ�ûˆ®�0⇤t°óÑvL¶,Âû∞9
'�°ó,Œ�–ÿDê)(áÂ ˚fl�⇣á⇥Ê�,ûˆ0€L®��}Ga,€�eœ✏
°óˆflŒ�–ÿ˚fl�⇣œ⇥

(2) '''pppnnnÑÑÑ———<<<⌃⌃⌃êêê: 'pn⌃êÑ�*ÕÅvπ⌘/(�öÑæn¶P6↵€LÎ�Ñ
—<⌃ê(AQP)⇥˙éfl°«7ÑπHÚœó0�€våî(,F/˙é«7ÑÄ/⇢4
OpnÑˆÙy',‡��⇥(éA✏pnÑ—<⌃ê(Ç˘ÇˆÙè⌫pn€L˙éó„Ñ
Â‚⌅⌃)⇥⌘Ï–˙�Õ˙é⌃µø'!ã�PLA Ñ—<⌃êπH�PLA˝%e«7Ä
/Ñ:w,û∞˘'pn€L⇢:¶fiÌ˙!,(›�pnÑˆÙy'Ñ�ˆ˘pn€L⇢:
¶˙!Â·≥(7˘”úÑæ¶åÕîˆÙÑ¸�ÅB⇥

≤à˛↵

DM554/545 Linear and Integer Programming 2015%c
NAT501 The First Year Project 2013, 2014%c
XI-DB2 Advanced Database Topics 2013Àc

∫á⌫h
A Framework for Structural Refinement of XML Keyword Search

Q. Guo, Y. Zhou. 4th international workshop on semantic search over the web (SSW 2014),
Hangzhou, China, September 1st-5th, 2014.

Sequence Pattern Matching over Time-Series Data with Temporal Uncertainty

Y. Zhou, C. Ma, Q. Guo, L. Shou, G. Chen. 2014 Proceedings of the 17th International Conference
on Extending Database Technology (EDBT), Athens, Greece, March 24-28, 2014.

Multi-Scale Dissemination of Time Series Data.

Q. Guo, Y. Zhou, L. Su. Proceedings of the 25th International Conference on Scientific and
Statistical Database Management (SSDBM), Jul 2013.

(anan≠1 · · · a1a0.c1c2c3 · · ·)b =
nÿ

k=0
akbk +

Œÿ

k=1
ckb≠k

10-9/17 CS101 29

The Base Ten and Binary System

encoding

decoding

ÌR~
Campusvej 55, 5230 Odense M

H +45 4221 6223
B qingsongg@gmail.com

Õ http://imada.sdu.dk/ qguo/

Y≤Ão
9¶Wπ'f — °ó: ZÎ 2011.9 –– 2015.5
-˝∫⌘'f — °ó: UÎ 2008.9 –– 2011.7
-⌫'f⌃! — °ó: ,— 2003.9 –– 2007.7

*∫ÀÕ
,∫(9¶Wπ'fpf�°ó:˚;˚ZÎfM,(Yongluan Zhou YàÑ⌥¸↵€LZÎ∫
áv⇥vÜfl:pnì,ë°ó,Â 'pn⌅⌃⇥;ÅsËπ/æ°ÿ'˝Ñó’å˚fl
˘'pn€L—<�§í✏,åûˆ'⌃ê⇥

vyÓ
ÓM1⌘;¸Ñ$*vyÓ:

(1) ⌃⌃⌃⇤⇤⇤✏✏✏AAA°°°óóóÑÑÑ'''ƒƒƒ!!!vvvLLL⌅⌅⌅⌃⌃⌃⇠⇠⇠���: pnÑ®�ÿ�, ÇpnáåpnÑ⌃⇤Ñÿ�, ⇢
¸Ù$*ÕÅÓò:1.°óDêå�}Ñ�9M– pnáÑÿ�⇢�ó°óœ8⌅é«}�{
}Ñ∂�; 2.pn⌃⇤Ñÿ�⇢ ⇣�}�Ga⇥«}⇢ ⇣°óˆàŒ��qÕ˚fl�⇣
á, �{}⇢ ⇣%ÕÑDêj9⇥9npnÑÿ�ûˆ®�0⇤t°óÑvL¶,Âû∞9
'�°ó,Œ�–ÿDê)(áÂ ˚fl�⇣á⇥Ê�,ûˆ0€L®��}Ga,€�eœ✏
°óˆflŒ�–ÿ˚fl�⇣œ⇥

(2) '''pppnnnÑÑÑ———<<<⌃⌃⌃êêê: 'pn⌃êÑ�*ÕÅvπ⌘/(�öÑæn¶P6↵€LÎ�Ñ
—<⌃ê(AQP)⇥˙éfl°«7ÑπHÚœó0�€våî(,F/˙é«7ÑÄ/⇢4
OpnÑˆÙy',‡��⇥(éA✏pnÑ—<⌃ê(Ç˘ÇˆÙè⌫pn€L˙éó„Ñ
Â‚⌅⌃)⇥⌘Ï–˙�Õ˙é⌃µø'!ã�PLA Ñ—<⌃êπH�PLA˝%e«7Ä
/Ñ:w,û∞˘'pn€L⇢:¶fiÌ˙!,(›�pnÑˆÙy'Ñ�ˆ˘pn€L⇢:
¶˙!Â·≥(7˘”úÑæ¶åÕîˆÙÑ¸�ÅB⇥

≤à˛↵

DM554/545 Linear and Integer Programming 2015%c
NAT501 The First Year Project 2013, 2014%c
XI-DB2 Advanced Database Topics 2013Àc

∫á⌫h
A Framework for Structural Refinement of XML Keyword Search

Q. Guo, Y. Zhou. 4th international workshop on semantic search over the web (SSW 2014),
Hangzhou, China, September 1st-5th, 2014.

Sequence Pattern Matching over Time-Series Data with Temporal Uncertainty

Y. Zhou, C. Ma, Q. Guo, L. Shou, G. Chen. 2014 Proceedings of the 17th International Conference
on Extending Database Technology (EDBT), Athens, Greece, March 24-28, 2014.

Multi-Scale Dissemination of Time Series Data.

Q. Guo, Y. Zhou, L. Su. Proceedings of the 25th International Conference on Scientific and
Statistical Database Management (SSDBM), Jul 2013.

(anan≠1 · · · a1a0.c1c2c3 · · ·)2 =
nÿ

k=0
ak2k +

Œÿ

k=1
ck2≠k

integer part fractional part

radix point

base 10base 2

.
2n-1 22 21 20 2-1 2-2 2-3

.an a2 a1 a0 c1 c2 c3… … cm
2-m

10-9/17 CS101 30

The Base 10/2 Notations of Fractions

ÌR~
Campusvej 55, 5230 Odense M

H +45 4221 6223
B qingsongg@gmail.com

Õ http://imada.sdu.dk/ qguo/

Y≤Ão
9¶Wπ'f — °ó: ZÎ 2011.9 –– 2015.5
-˝∫⌘'f — °ó: UÎ 2008.9 –– 2011.7
-⌫'f⌃! — °ó: ,— 2003.9 –– 2007.7

*∫ÀÕ
,∫(9¶Wπ'fpf�°ó:˚;˚ZÎfM,(Yongluan Zhou YàÑ⌥¸↵€LZÎ∫
áv⇥vÜfl:pnì,ë°ó,Â 'pn⌅⌃⇥;ÅsËπ/æ°ÿ'˝Ñó’å˚fl
˘'pn€L—<�§í✏,åûˆ'⌃ê⇥

vyÓ
ÓM1⌘;¸Ñ$*vyÓ:

(1) ⌃⌃⌃⇤⇤⇤✏✏✏AAA°°°óóóÑÑÑ'''ƒƒƒ!!!vvvLLL⌅⌅⌅⌃⌃⌃⇠⇠⇠���: pnÑ®�ÿ�, ÇpnáåpnÑ⌃⇤Ñÿ�, ⇢
¸Ù$*ÕÅÓò:1.°óDêå�}Ñ�9M– pnáÑÿ�⇢�ó°óœ8⌅é«}�{
}Ñ∂�; 2.pn⌃⇤Ñÿ�⇢ ⇣�}�Ga⇥«}⇢ ⇣°óˆàŒ��qÕ˚fl�⇣
á, �{}⇢ ⇣%ÕÑDêj9⇥9npnÑÿ�ûˆ®�0⇤t°óÑvL¶,Âû∞9
'�°ó,Œ�–ÿDê)(áÂ ˚fl�⇣á⇥Ê�,ûˆ0€L®��}Ga,€�eœ✏
°óˆflŒ�–ÿ˚fl�⇣œ⇥

(2) '''pppnnnÑÑÑ———<<<⌃⌃⌃êêê: 'pn⌃êÑ�*ÕÅvπ⌘/(�öÑæn¶P6↵€LÎ�Ñ
—<⌃ê(AQP)⇥˙éfl°«7ÑπHÚœó0�€våî(,F/˙é«7ÑÄ/⇢4
OpnÑˆÙy',‡��⇥(éA✏pnÑ—<⌃ê(Ç˘ÇˆÙè⌫pn€L˙éó„Ñ
Â‚⌅⌃)⇥⌘Ï–˙�Õ˙é⌃µø'!ã�PLA Ñ—<⌃êπH�PLA˝%e«7Ä
/Ñ:w,û∞˘'pn€L⇢:¶fiÌ˙!,(›�pnÑˆÙy'Ñ�ˆ˘pn€L⇢:
¶˙!Â·≥(7˘”úÑæ¶åÕîˆÙÑ¸�ÅB⇥

≤à˛↵

DM554/545 Linear and Integer Programming 2015%c
NAT501 The First Year Project 2013, 2014%c
XI-DB2 Advanced Database Topics 2013Àc

∫á⌫h
A Framework for Structural Refinement of XML Keyword Search

Q. Guo, Y. Zhou. 4th international workshop on semantic search over the web (SSW 2014),
Hangzhou, China, September 1st-5th, 2014.

Sequence Pattern Matching over Time-Series Data with Temporal Uncertainty

Y. Zhou, C. Ma, Q. Guo, L. Shou, G. Chen. 2014 Proceedings of the 17th International Conference
on Extending Database Technology (EDBT), Athens, Greece, March 24-28, 2014.

Multi-Scale Dissemination of Time Series Data.

Q. Guo, Y. Zhou, L. Su. Proceedings of the 25th International Conference on Scientific and
Statistical Database Management (SSDBM), Jul 2013.

(anan≠1 · · · a1a0.c1c2c3 · · ·)2 =
nÿ

k=0
ak2k +

Œÿ

k=1
ck2≠k

integer part fractional part

radix point

base 10base 2

𝟏𝟑 = 𝟏 ∗ 𝟐𝟑 + 𝟏 ∗ 𝟐𝟐+𝟎 ∗ 𝟐𝟏 + 𝟏 ∗ 𝟐𝟎

. 𝟖𝟏𝟐𝟓 = 𝟏 ∗ 𝟐6𝟏+𝟏 ∗ 𝟐6𝟐 + 𝟎 ∗ 𝟐6𝟑 + 𝟏 ∗ 𝟐6𝟒

decimalbinary

0 0 1 3 8 2 5. 11 1 0 1 1 0 1. 1

10-9/17 CS101 31

Decoding the binary representation 100101

Converting Binary Representations to
Decimal Number

10-9/17 CS101 32

Algorithm 1: Encoding Positive Integers to
Binary Representations

Algorithm procedures
- Step 1. Divide the value by 2 and record the remainder
- Step 2. If the quotient obtained is not zero, then take the

quotient as the value and repeat Step 1, i.e. divide the
newest quotient by 2 and record the remainder.

- Step3. Now that a quotient of zero has been obtained, the
binary representation of the original value consists of the
remainders listed from right to left in the order they were
recorded

10-9/17 CS101 33

Encoding 13 in Binary

2 6
3

2 3
1

132
6

…… 1

1

0

1Remainder

2 1
0

Quotient

1 1 0 1

……

……

10-9/17 CS101 34

Encoding 0.8125 in Binary

…… take the integer part 1

1

0

1 1 0 1

0.8125

1.6250

0.6250

1.2500

0.2500

0.5000

0.5000

2

2

2

…… take the integer part

…… take the integer part

1.0000

0.0000

2

…… take the integer part 1

The remainder is 0 and stop
10-9/17 CS101 35

Decoding the Binary Representation

Example: 101.101

10-9/17 CS101 36

Hexadecimal Notation

Hexadecimal notation
- A shorthand notation for long

bit patterns
- Divides a pattern into groups of

four bits each
- Represents each group by a

single symbol
1010 0011

Example:	
- encoding 10100011
- 10100011 becomes A3

10100011

A 3

10-9/17 CS101 37

The Hexadecimal Coding System

To convert from binary to hex
- starting on the right of the binary

number, arrange the binary digits in
groups of four

- convert each quartet to the
corresponding hex digit

- 110 1110 1100
- 6 E C

To convert from hex to binary
- replace each hex digit with its 4-bit

binary equivalent
- 8 A 5
- 1000 1010 0101

10-9/17 CS101 38

In-class Exercises

Convert the following decimal numbers to binary representation
- 9, 11, 17
- 216, 232 -1
- 1/16, 1/128, 5/8, 1/216

Convert the following binary representations to decimal values
- 101010, 111111, 0.011, 101.111
- 100…0 (with 10 zeros), 100…0 (with 20 zeros), 100…0 (with 30

zeros),
- 11…1(with 30 ones)

10-9/17 CS101 39

Summary of Binary System

By far, we learned how to represent unsigned/positive
integers/fractions as binary numbers
- We can store two different values in 1 bit: 0 or 1.
- In general, in n bits, you can store 2n different values.
- So with 4 bits, we can store 16 values - 0 to 15, but there are

no negative values.

How to represent negative values?
- In general, we can split the number of values in half, making

half positive, half negative, and zero.
- Two‘s complement notation (补码)

10-9/17 CS101 40

Arithmetic – Binary Addition

Binary Addition
- The sum digit is 1 only when

both inputs are different
- The carry digit is 1 only when

both inputs are 1
- so carry bit is
- build a logic table for the sum

𝒄𝒂𝒓𝒓𝒚 = 𝒂 ∗ 𝒃

1 2 3 4

2 8 6 9

𝒂, 𝒃 = 0 ⋯ 9

1 3

4 1 0 3

9

1 0

1 0

1

3

Step 1

4

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

0

0

0

0

Decimal Addition 𝒂 + 𝒃 ∊ [0,18]

Two digits x y

carry
sum

10-9/17 CS101 41

10-9/17 CS101 42

Binary Addition

𝒂 𝒃 ¬𝒃 𝒂 ∗ ¬𝒃 ¬𝒂 ¬𝒂 ∗ 𝒃 (𝒂¬𝒃) + (𝒂¬𝒃)

1 1 0 0 0 0 0

1 0 1 1 0 0 1

0 1 0 0 1 1 1

0 0 1 0 1 0 0

10-9/17 CS101 43

Addition – Half Adder

𝒂 ∗ ¬𝒃

𝒂 ∗ 𝒃	

¬𝒂 ∗ 𝒃

𝒂
𝒃

¬𝒂

¬𝒃

Logical circuit of half adder (HA)

HA
a

b

sum

carry
A black box model of HA

sum

carry

HA

HA

Addition – Full Adder

Full adder (HA)
- Half adder adds two numbers giving sum and carry

result, but no provision for a carry in.
- So we hook two half adders together to create a 1-bit

full-adder

𝒂

𝒃
𝑐𝑎𝑟𝑟𝑦

𝒔𝒖𝒎
𝑐𝑎𝑟𝑟𝑦

𝒔𝒖𝒎
carry	in

carry	
out

FA

a b

carry in

sum
carry out

A black box model of HA
10-9/17 CS101 44

Adding Two 4-bit Numbers

Let's add 0101 and 0110

overflow
1101

0

000

0 0 1 1 0 1 1 0

lowhigh

1

FA FA FA FA

??? 001

10-9/17 CS101 45

4.
Storing Integers & Fractions

Storing Integers

Two’s complement notation (补码)
- The most popular means of representing integer values
- The standard using pattern is with 32 bits, 8 bits in the

earlier days

Excess notation
- Another means of representing integer values – used in

floating point notation
- Both can suffer from overflow errors.

10-9/17 CS101 47

Two’s Complement Notation Systems

10-9/17 CS101 48

10-9/17 CS101 49

Two’s Complement Notation Using 8 Bits

Two‘s complement notation for 6

0 0 0 0 0 1 1 0

1 1 1 1 1 0
Complement the
remaining bits

Two‘s complement notation for -6

Another method to compute two’s complement of 6
- One’s complement (反码): flip all the bits, 11111001
- add 1 to the result: 11111001+00000001 = 11111010 = -6

Copy the bits from right to left
until meet a 1

1 0

How Many Values with the Following Bit
Patterns？

With 4 bits
- min = -8 = -24-1 and max = 7 = 24-1 – 1

With 16 bits
- min = -32,768 = -216-1 and max = 32,767 = 216-1 – 1

With 16 bits
- min = -32,768 = -216-1 and max = 32,767 = 216-1 – 1

With 32 bits
- min = -2,147,483,648 = -232-1 and max = 2,147,483,647 =

232-1 – 1

10-9/17 CS101 50

Addition Problems Converted to Two’s
Complement Notation

10-9/17 CS101 51

10-9/17 CS101 52

Overflow – Trouble in Paradise

Using 6 bits we can represent values from -32 to 31, so what
happens when we try to add 19 plus 14 or -19 and -14.

19
+14
33

010011
+001110
100001

we have added two positive
numbers and gotten a negative
result – this is overflow

-19
-14
-33

101101
+110010
011111

we have added two negative
numbers and gotten a positive
result – this is overflow

Excess Notation System

Three-bits Pattern

10-9/17 CS101 53

N-bits pattern:
excess notation = binary code – 2N-1

Four-bits pattern

Storing Fractions – Floating-Point

Floating-point notation (FP)
- Consists of a sign bit (符号位), a mantissa field (小数位), and

an exponent field (指数位)
- Suppose we use 8 bits to store FP

Two related topics
- Normalized form
- Truncation errors

10-9/17 CS101 54

Algorithm 2: Converting Fractions to FP

Algorithm procedures
- Represent the fraction x in binary
► such as 2¼ à 10.01

- Normalize the number (move the binary point to the left of
the most significant 1 – leftmost one) and adjust the
exponent, similar to scientific notation
► 10.01 * 20 = .1001 * 22 , so 2 is the exponent value

- Calculate the exponent by adding the excess value to the
exponent value:
► 2 + 4 = 6 = 110 in binary

- Figure out the sign – positive is 0
- Put all together
► 0 110 1001

10-9/17 CS101 55

Example 1: Represent Fractions in FP

Representing -3/8 in FP
- Remember if the number has a whole portion, the exponent

will be positive. If the number is 0 or a fraction, the exponent
will be 0 or negative

- -3/8 = .011 in binary
- normalize .11 * 2-1 (pad fraction = .1100)
- calculate exponent: -1 + 4 = 3 = 011
- calculate sign: 1 for negative
- put it together: 1 011 1100

10-9/17 CS101 56

10-9/17 CS101 57

Example 2: Truncation Error

Representing floating point

Most common forms are binary32 (single precision) and
binary64 (double precision)

Binary32 (single-precision FP, en.wikipedia.org/wiki/Binary32)

Binary64(double-precision FP, en.wikipedia.org/wiki/Binary64)

Shah et al. [13] studied how to process a single continuous query operator on multi-

ple shared-nothing machines. In this work, load imbalance is distinguished into short-65

term imbalance and long-term imbalance. Load balancing is in charge by an operator

Flux that encapsulates adaptive partitioning and routing. To reduce the state move-

ments, Flux sorts the sites in descending order of load and pairs them together, where

load balance is realized by moving partitions around the sites in each pair. However,

the parallelism in Flux is fixed and the cost for state movements has also not been70

quantified.

Nasir et al. [10] investigated the load balancing problem for stateless operators by

applying the “power of two choices” approach. Their solution, namely Partial Key

Grouping (PKG), improves the performance by mapping each key to two distinct sub-

streams and forwarding each tuple to the less loaded of the two substreams. This75

approach can not be applied directly to stateful operator, because we need an extra

operator to consolidate the partial results.

Gedik [3] proposed a partition scheme that is close to our solution. Stream is split

with a partition function hHt,Hci, which is a hybrid of consistent hash and explicit

mapping, for multidimensional load balancing in stateful parallelization. This strategy80

can be applied for dynamic load balancing, but it has two drawbacks: (1) it has to

reconstruct a new partition function after each process, which introduces new overhead

for processing latency; and (2) it will result in expensive state migration since it uses a

hash function to rebalance the load as we addressed.

value = (�1)

sign ⇥

1 +

23X

i=1

b23�i2
�i

!
⇥ 2

(e�127)

value = (�1)

sign

1 +

52X

i=1

b52�i2
�i

!
⇥ 2

e�1023

3. Stateful Load Balancing85

3.1. Problem Statement

A streaming computation is usually organized as an operator graph [1]. Each oper-

ator implements a bunch of predefined processing logic, such as join, aggregate, filter,

4

Shah et al. [13] studied how to process a single continuous query operator on multi-

ple shared-nothing machines. In this work, load imbalance is distinguished into short-65

term imbalance and long-term imbalance. Load balancing is in charge by an operator

Flux that encapsulates adaptive partitioning and routing. To reduce the state move-

ments, Flux sorts the sites in descending order of load and pairs them together, where

load balance is realized by moving partitions around the sites in each pair. However,

the parallelism in Flux is fixed and the cost for state movements has also not been70

quantified.

Nasir et al. [10] investigated the load balancing problem for stateless operators by

applying the “power of two choices” approach. Their solution, namely Partial Key

Grouping (PKG), improves the performance by mapping each key to two distinct sub-

streams and forwarding each tuple to the less loaded of the two substreams. This75

approach can not be applied directly to stateful operator, because we need an extra

operator to consolidate the partial results.

Gedik [3] proposed a partition scheme that is close to our solution. Stream is split

with a partition function hHt,Hci, which is a hybrid of consistent hash and explicit

mapping, for multidimensional load balancing in stateful parallelization. This strategy80

can be applied for dynamic load balancing, but it has two drawbacks: (1) it has to

reconstruct a new partition function after each process, which introduces new overhead

for processing latency; and (2) it will result in expensive state migration since it uses a

hash function to rebalance the load as we addressed.

value = (�1)

sign ⇥

1 +

23X

i=1

b23�i2
�i

!
⇥ 2

(e�127)

value = (�1)

sign

1 +

52X

i=1

b52�i2
�i

!
⇥ 2

e�1023

3. Stateful Load Balancing85

3.1. Problem Statement

A streaming computation is usually organized as an operator graph [1]. Each oper-

ator implements a bunch of predefined processing logic, such as join, aggregate, filter,

4

Error Detection

Parity bits (校验位)
- add an extra bit to each memory cell
- for odd parity
► count the number of 1s in memory cell
► set extra parity bit to 0 if value already contains an odd

number of 1s
► set parity bit to 1 if number of 1 bits is even
► so memory cell + parity bit will always have an odd number

of 1s

10-9/17 CS101 59

The ASCII codes for the letters A and F
adjusted for odd parity

10-9/17 CS101 60

5.
Main Memory & Mass Storage

Storage Devices

The commonly used storage devices
- Main memory: the bit at the left (high-order) end of the

conceptual row of bits in a memory cell

Massive storages
- Magnetic Systems

§ Disk
§ Tape

- Optical Systems
§ CD
§ DVD

- Flash Drives

10-9/17 CS101 62

Main Memory Cells

Cell: A unit of main memory
- typically 8 bits form one byte)
- Most significant bit: the bit at the left (high-order) end of

the conceptual row of bits in a memory cell
- Least significant bit: the bit at the right (low-order) end of

the conceptual row of bits in a memory cell

The organization of a byte-size memory cell

10-9/17 CS101 63

Main Memory Addresses

Address: A “name” that uniquely identifies one
cell in the computer’s main memory
- The names are actually numbers.
- These numbers are assigned consecutively starting at

zero.
- Numbering the cells in this manner associates an order

with the memory cells.

10-9/17 CS101 64

Memory Cells Arranged by Address

10100001
pointer (指针)

10-9/17 CS101 65

Memory Terminology

Random Access Memory (RAM)
- Memory in which individual cells can be easily accessed in

any order

Dynamic Memory (DRAM)
- RAM composed of volatile memory

10-9/17 CS101 66

Measuring Memory Capacity

Kilobyte: 210 bytes = 1024 bytes
- Example: 3 KB = 3 times 1024 bytes
- “kibi” in short

Megabyte: 220 bytes = 1,048,576 bytes
- Example: 3 MB = 3 times 1,048,576 bytes
- “megi” in short

Gigabyte: 230 bytes = 1,073,741,824 bytes
- Example: 3 GB = 3 times 1,073,741,824 bytes
- “gigi” in short

Terabyte: 240 bytes
Petabyte: 250 bytes
Exabyte: 260 bytes
10-9/17 CS101 67

Mass Storage

Why mass storage?
- On-line versus off-line
- Typically larger than main memory
- Typically less volatile than main memory
- Typically slower than main memory

Magnetic Systems
- Disk
- Tape

Optical Systems
- CD
- DVD

Flash Drives

10-9/17 CS101 68

A Magnetic Disk Storage System

10-9/17 CS101 69

Magnetic Tape Storage

10-9/17 CS101 70

Compact Disc CD storage

10-9/17 CS101 71

CDs and DVDs

- Reflective material covered with clear protective coating.
- Information is recorded by creating variations in this

reflective surface
- High powered laser beams to created pits
- Low powered laser beam to retrieve data
- Smooth unpitted area is a 1, pitted area is interpreted as

a 0

10-9/17 CS101 72

Flash Drives

- Magneticc & optical devices require physical motion to
store and retrieve data

- slow
- In flash memory, bits are stored by sending electronic

signals directly to the storage medium where they cause
electrons to be trapped in tiny chambers of silicon
dioxide, thus altering the characteristics of small
electronic circuits

- Good for off-line storage, digital cameras, phones, PDAs

10-9/17 CS101 73

Files

File: A unit of data stored in mass storage system
- Fields and keyfields
- Operating System (OS)

Physical record versus Logical record

Buffer: A memory area used for the temporary storage
of data (usually as a step in transferring the data)

10-9/17 CS101 74

In-class Exercise

Convert the following decimal numbers to binary representation
- 9, 11, 17
- 216, 232 -1
- 1/16, 1/128, 5/8, 1/216

Convert the following binary representations to decimal values
- 101010, 111111, 0.011, 101.111
- 100…0 (with 10 zeros), 100…0 (with 20 zeros), 100…0 (with 30

zeros),
- 11…1(with 30 ones)

10-9/17 CS101 75

THANKS

10-9/17 CS101 76

