CS101 Fall 201/

Introduction to
Computer Science

Instructor: Qingsong Guo
School of Computer Science & Technology

http://abelgo.cn/csl101.html

\ Lecture 2, Lecture 3:

Welcome to the Digital World !

Bits, Data Representation, and
Binary System

What types of data can you
recognize in your daily life?

11111

Think in Data: Data Storage

01 Bits and Their Storage

02 Representing Information as Bit Patterns
03 The Binary System

04 Storing Integers & Fractions

05 Main Memory & Mass Storage

10-9/17 CS101

Bits and Their Storage

\ \

Hardware Advances

Data storage relies on the following techniques
- Electronics (F), magnetics (%), optics (%)

Representing information as electrical signals led to
telegraph in mid-1800s (H{k, 155, H7-i%)

- needed device to control current flow
- telegraph clicker, relays, vacuum tubes

Magnetic storage - 1878 (F&/T i, 17 1ik)
- magnetic tape, hard disk

Photography - end of 18th century (35K, Y17 t#)

- based on principle that some chemicals change their
properties when exposed to light

- silver nitrate changes to metallic silver

- optical storage such as CD & DVD

10-9/17 CS101

Bit

Bits and Bit Patterns

ars IRIR

0

Binary Digit (O or 1)

Bit Patterns are used to represent information

Numbers: positive integer, negative integer, fraction, etc.
Text characters

Images

Sound

And others

10-9/17 CS101

Switches(F<)

An open switch A closed switch

e :

.—
in out in out
in out in out
0 B

10-9/17 CS101

Boolean Operations

Boolean operation

- An operation that manipulates one or more
true/false values and generate a true/false output

Specific operations
- AND
- OR
- XOR (exclusive or)
- NOT

10-9/17 CS101

The Boolean Operations

The AND operation
0 0 1 1
AND o AND 1 AND o AND 1
0 0 0 1

The OR operation
0 0 1 1
OR o OR 1 OR o OR 1
0 1 1 1

The XOR operation
0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
0 1 1 0

10-9/17 CS101

10

Logical Table or Truth Table (B %)

NOT/Negation (=) AND (*, A)
Q
p | -pP Pp+0 | B
0 & B
0 0
OR(+, V) XOR ()
Q Q
p+Q | [N pdo| B
O © N ol o
10-9/1n CS101 n

Gates(iZ4&[])

Gate: A device that computes a Boolean operation
- Often implemented as (small) electronic circuits

- Provide the building blocks from which computers are
constructed

- AND, OR, XOR (Exclusive OR) , NOT

VLSI (Very Large Scale Integration)

- Density of integration
- Integrate a huge number of gates into a Chip(:ts /)

10-9/17 CS101

12

Gates and Their Computations

AND

Inputs

} Output
Inputs Output
00 0
01 0
10 0
11 1

XOR

Inputs

_\Df Output

|

Inputs Output
00 0
01 1
10 1
11 0

10-9/17

CS101

OR

NOT

Inputs :>7 Output

Inputs Output
0 0 0
01 1
10 1
11 1

Inputs >c Output
Inputs Output
0 1
1 0

13

Logical Expression and XOR

Logical expression of XOR pdo| D 2
P®Q = (=P * Q) + (P * =Q) i
oo B
0
P QP Q]P0 PiQ (P Q)
1 1 0 0 0 0 0
1 0 0 1 0 1 1
0 1 1 0 1 0 1
0 0 1 1 0 0 0

10-9/17 CS101 14

Truth Table For 1-bit Comparator

0 v | rea reale0ecr
1 1 0 0 1 0 1

1 0 0 1 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 1 1

10-9/17 CS101

15

Circuit For 1-bit Comparator

D
. D

P ¢ >C
} (P+Q) + (=P * ~Q)
>C —|P*ﬁQ

—Q

10-9/17 CS101 16

Flip-flops (fii % 2%)

Flip-flop: A circuit built from gates that can store one
bit (binary digit) of data.

- Oneinputline is used to set its stored value to 1

- Oneinput line is used to set its stored value to O

- While both input lines are 0, the most recently stored value
IS preserved

output

inputs Flip-flops

A black box model of Flip-flops

10-9/17 CS101 17

10-9/17

A Simple Flip-flop Circuit

P ...

o

CS101

18

Setting the Output of a Flip-flop to 1

o1 ‘\) —HE

{ Since the output of OR is 1
and, in turn, the output of
AND is 1.

The 1 from AND keeps the OR from

changing after the upper input returns to 0.

10-9/17 CS101 19

Setting the Output of a Flip-flop to O

0 ﬁ)‘>..EI
o

0
Place a 1 on the lower input

1o

o

Since the output of AND
changes to 0 and, in turn, the
output of OR changes to 0.

The 0 from output keeps the AND from

changing after the lower input returns to O.

10-9/17

CS101

20

Another Way to Construct a Flip-flop

Input >——3 {>C

— Output
Input >—— {>C -~ VP

Here is another way to construct a flip-flop. Please
explain why it can hold one bit of information by

you self. | will ask someone to explain it to me in the
next lecture.

10-9/17 CS101

21

Representing Information as
Bit Patterns

\ \

Representing Text

Each character (letter, punctuation, etc.) is assigned a unique bit pattern.

ASCII (American Standard Code, ASS-kee)
- Uses patterns of 7-bits to represent most symbols used in
written English text

- Modern - uses 8-bit code, where last 128 characters are
dependent on manufacturer
ISO standard

- Uses patterns of 32-bits to represent most symbols used in
languages world wide - billions of characters

Unicode
- Both ASCII and ISO are originally designed for English, and
thus are deficiency for international use.

- Uses patterns of 8/16-bits to represent the major symbols
used in languages world wide

- UTF-8, UTF-16 - Unicode Transformation Format 8/16-bit

10-9/17 CS101 23

ASCII Table

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr
00 000 NULL 32 20 040 Space 6440 100 @, @ 96 60 140 ` °
11 001 Start of Header 33 21 041 ! ! 65 41 101 A A 97 61 141 a, a
2 2 002 Start of Text 34 22 042 " " 66 42 102 B B 98 62 142 b b
33 003 End of Text 35 23 043 # # 67 43 103 C C 99 63 143 c c
4 4 004 End of Transmission 36 24 044 $, $ 68 44 104 D D 100 64 144 d d
55 005 Enquiry 37 25 045 %, % 69 45 105 E E 101 65 145 e e
6 6 006 Acknowledgment 38 26 046 &, & 70 46 106 F F 102 66 146 f f
77 007 Bell 39 27 047 ' ' 71 47 107 G, G 103 67 147 g ¢
8 8 010 Backspace 40 28 050 ((72 48 110 H H 104 68 150 h h
99 011 Horizontal Tab 41 29 051)) 73 49 111 I 1 105 69 151 i i

10 A 012 Line feed 42 2A 052 * * 74 4A 112 J) 106 6A 152 j |
11 B 013 Vertical Tab 43 2B 053 + + 75 4B 113 K K 107 6B 153 k k
12 C 014 Form feed 44 2C 054 , , 76 4C 114 L L 108 6C 154 l |
13 D 015 Carriage return 45 2D 055 - - 77 4D 115 M, M 109 6D 155 m m
14 E 016 Shift Out 46 2E 056 . . 78 4E 116 N N 110 6E 156 n n
15 F 017 Shiftln 47 2F 057 / / 79 4F 117 O O 111 6F 157 o o
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P P 112 70 160 p p
17 11 021 Device Control 1 49 31 061 1 1 8151 121 Q Q 113 71 161 q q
18 12 022 Device Control 2 50 32 062 2 2 82 52 122 R R 114 72 162 r r
19 13 023 Device Control 3 51 33 063 3 3 8353 123 S S 115 73 163 s s
20 14 024 Device Control 4 52 34 064 4 4 84 54 124 T T 116 74 164 t t
21 15 025 Negative Ack. 53 35 065 5 5 85 55 125 U U 117 75 165 u u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V V 118 76 166 v v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W W 119 77 167 w w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X X 120 78 170 x x
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y Y 12179 171 y vy
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z Z 122 7A 172 z z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 	L, | 123778 173 { {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ \ 124 7C 174 | |
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135]] 125 7D 175 } }
30 1E 036 Record Separator 62 3E 076 > > 94 5 136 ^ A~ 126 7E 176 ~ ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ _ 127 7F 177 Del
10-9/17 CS101 asciichars.com

Represent “Hello” in ASCII

“Hello"”

01001000 01100101 01101100 01101100
H e | |

Question:

What is the ASCII of “World"?

Question:
57 6F 72 6C 64
Wor | d

10-9/17 CS101

01101111

o

25

Representing Numeric Values

Binary notation
- Uses bits to represent a number in base two

Limitations of digital representations of numeric values
- Overflow - occurs when a value is too big to be represented

- Truncation - occurs when a value cannot be represented
accurately

o« HNODBOOR

8 bits can represent 28=256 How to represent fraction
different integers 1/3=0.3... with 8 bits

10-9/17 CS101

Representing Other Types of Data

Representing images
- Bit map - representing an image as a collection of dots,
each of which is called a pixel

- RGB, etc.

Representing sound

- Sample the amplitude of the sound wave at regular intervals
and record it as time-series value

- MP3, MP4, etc.

10-9/17 CS101 27

The Binary System \

\ \

Numeral Systems (E(F% %)

What types of numeral systems do you know?

: . 0123456789
Decimal system (ki) IYPS0TVAQ
_ LIEHEIVV VIV VT IX X
- Arabic numerals: 0,1,2,3,4,5,6,7,8,9 obzz(\;sceqbb o
. . . o
- The traditional decimal system is °°°o@@mé@;‘;2,2?
based on powers of ten O——=mAHNtN\N

Binary system (k)

- Binary number: 0, 1

- Octonary: 0-7, 3 bits of binary

- Hexadecimal: 0-9 A-F, 4 bits of binary
Others

- 12 (dozens, month/year), 24(hours/day), 60 (minutes/hour,
ffi-/circle), 100(century), etc.

o0
(@nan—1---aiag.cicacs -)p = Z apb® + Z cpb "
k=0 k=1

10-9/17 CS101 29

The Base Ten and Binary System

a. Base ten system .| b. Base two system
encpding
3 7 5 :—Representation 15 RON =S il :—Representation
> 5 2 &35 8L
o @0 <
s S O L-Position’s quantity $ <€ 5 O | Pposition's quantity
S
Ny - -
decoamg
radix point
n o
_ zk 2—k
(anan—1---ai1agicicacs -)2 =|) ar2|+| > cx
k=0 k=1
integer part fractional part
base 2 base 10
n-1 22 21 970 2-1 22 23 2-m

10-9/17 CS101 30

The Base 10/2 Notations of Fractions

binary

8808 8800

decimal

0088 0886

13=1+23+1%2240x21 4+ 1«20

8125 =1x2"141%22 4023 +1x27%

radix point

(AnGn_1---aiag

C1C2C3 - - -

integer part
base 2

10-9/17

)2 =

fractional part

CS101

n
Z aka
k=0

%_

50
Z Ck2_k
k=1

base 10

31

Converting Binary Representations to
Decimal Number

Decoding the binary representation 100101

Binary
pattern—[1111 1 < one -
0 X two = 0
1 x four = 4
0 X eight = 0
0 X sixteen = 0
1 X thirty-two = 32
T ' 37 Total

Value Position’s
of bit quantity

10-9/17 CS101

Algorithm 1: Encoding Positive Integers to
Binary Representations

Algorithm procedures

- Step 1. Divide the value by 2 and record the remainder

- Step 2. If the quotient obtained is not zero, then take the
guotient as the value and repeat Step 1, i.e. divide the
newest quotient by 2 and record the remainder.

- Step3. Now that a quotient of zero has been obtained, the
binary representation of the original value consists of the
remainders listed from right to left in the order they were
recorded

10-9/17 CS101 33

10-9/17

Encoding 13 in Binary

Remainder

CS101

1101

34

Encoding 0.8125 in Binary

0.8125 D 4 a
take the integer part 07

...... take the integer part o
0.5000 | take the integer part Q
0.5000 D 4 a
1.0000 [N take the integer part o l
0.0000 110 1

The remainder is 0 and stop

10-9/17 CS101

Decoding the Binary Representation

Example: 101.101

Binary "3 9 1.1 0 1
pattern 1 X one-eighth = 14
0 X one-fourth = o
1 X one-half = 14
1 X one = 1
0 x two = 0
1 Xx four = 4
: | b | ! 5% Total

Value Position’s
of bit quantity

10-9/17 CS101

36

Hexadecimal Notation

Hexadecimal notation

- Ashorthand notation for long
bit patterns

- Divides a pattern into groups of
four bits each

- Represents each group by a
single symbol

Example:
- encoding 10100011

- 10100011 becomes A3

10-9/17 CS101

10100011

U
U

37

The Hexadecimal Coding System

Bit pattern

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

10-9/17

Hexadecimal
representation

H EH OOQ D> OWo 900l & WM EFE o

To convert from binary to hex

- starting on the right of the binary
number, arrange the binary digits in
groups of four

- convert each quartet to the
corresponding hex digit

- 11011101100
- 0 E C

To convert from hex to binary

- replace each hex digit with its 4-bit
binary equivalent

- 8 A 5
- 10001010 0101

CS101 38

In-class Exercises

Convert the following decimal numbers to binary representation
- 911,17

- 216, 232 _’|

- 1/16,1/128, 5/8, 1/2¢

Convert the following binary representations to decimal values
- 101010, 111111, 0.011, 101.111

- 100...0 (with 10 zeros), 100...0 (with 20 zeros), 100...0 (with 30
Zeros),

- 11...1(with 30 ones)

10-9/17 CS101 39

Summary of Binary System

By far, we learned how to represent unsigned/positive
integers/fractions as binary numbers

- We can store two different values in 1 bit; O or 1.
- In general, in n bits, you can store 2" different values.

- So with 4 bits, we can store 16 values - 0 to 15, but there are
no negative values.

How to represent negative values?

- In general, we can split the number of values in half, making
half positive, half negative, and zero.

- Two's complement notation (¥MZ)

10-9/17 CS101 40

Arithmetic - Binary Addition

Decimal Addition
4
4 86806808

Step 1
Step 2 E a
Step 3 u
Step 4 a

10-9/17

a,b=0-9 a-+bhe[0,18]

Two digits ??

carry
sum

Binary Addition

CS101

The sum digitis 1 only when
both inputs are different

The carry digit is 1 only when
both inputs are 1

so carry bitis carry=axb
build a logic table for the sum

41

Binary Addition

DI E Y e e e
1 1 0 0 0 0 0

1 0 1 1 0 0 1
0 1 0 0 1 1 1
0 0 1 0 1 0 0

10-9/17 CS101

42

10-9/17

Addition - Half Adder

Dy

axb
Logical circuit of half adder (HA)

A black box model of HA

CS101

43

Addition - Full Adder

Full adder (HA)

- Half adder adds two numbers giving sum and carry
result, but no provision for a carry in.

- So we hook two half adders together to create a 1-bit

full-adder
carry in carry in
sum
a_
b— carry
out
m CaTy out
A black box model of HA

10-9/17 CS101 44

Adding Two 4-bit Numbers

Let'sadd 0107 and 0110

overflow

:high low

10-9/17 CS101 45

Storing Integers & Fractions

\ \

Storing Integers

Two's complement notation (%M)
- The most popular means of representing integer values

- The standard using pattern is with 32 bits, 8 bits in the
earlier days

Excess notation
- Another means of representing integer values - used in
floating point notation

- Both can suffer from overflow errors.

10-9/17 CS101

47

Two's Complement Notation Systems

a. Using patterns of length three b. Using patterns of length four

10-9/17 CS101 48

Two's Complement Notation Using 8 Bits

Two's complement notation for 6
000O0O0OT1T1@®0
e Copy the bits from right to left
T e until meet a 1
Lo =
1 | I 1 1 I
/l | 1 1 1 1
1 | 1 1 1 1
1 | 1 1 | 1
Complement the LA S AR SN AR v
remaining bits 1 111101 0

Two's complement notation for -6

Another method to compute two’s complement of 6
- One's complement (fhd): flip all the bits, 11111001

- add 1totheresult: 11111001+00000001 =11111010 = -6

10-9/17 CS101 49

How Many Values with the Following Bit
Patterns

With 4 bits

- min=-8=-2%"and max=7=2%"-1

With 16 bits
- min =-32,768 =-2'1" and max = 32,767 =2'%1 -1

With 16 bits
- min=-32,768 =-2'%1" and max = 32,767 = 2'%1 - 1

With 32 bits

- min=-2,147,483,648 = -2321 and max = 2,147,483,647 =
232-1 —1

10-9/17 CS101 50

Addition Problems Converted to Two's
Complement Notation

Problem in Problem in Answer in
base ten two's complement base ten
3 0011
L2 —f + 0010
— 0101 5
_3 1101
.2 = +1110
1011 -5
7 0111
.5 - 11011
0010 2

10-9/17

CS101

51

Overflow - Trouble in Paradise

Using 6 bits we can represent values from -32 to 31, so what
happens when we try to add 19 plus 14 or -19 and -14.

010011
+001110
100001

101101

+110010
011111

10-9/17

we have added two positive
numbers and gotten a negative
result - this is overflow

we have added two negative
numbers and gotten a positive
result - this is overflow

CS101 52

Excess Notation System

Four-bits pattern Three-bits Pattern
Bit Value Bit Value
pattern represented pattern represented

1111 7

1110 6 111 3
1101 5 110 2
1100 4 101 1
1011 3

1010 2 100 0
1001 1 011 -1
1000 0 010 -2
0111 -1 001 —
0110 -2

0101 -3 000 =
0100 -4

0011 -5

0010 -6 .

0001 -7 N-bits pattern:

0000 -8

excess notation = binary code - 2N-1

10-9/17 CS101

Storing Fractions - Floating-Point

Floating-point notation (FP)

A=)

- Consists of a sign bit (5+5z), a mantissa field (- (i), and
an exponent field (f§%%/7)
- Suppose we use 8 bits to store FP

Mantissa Two related topics

Exponent - Normalized form

Sign bit - Truncation errors

10-9/17 CS101 54

Algorithm 2: Converting Fractions to FP

Algorithm procedures

Represent the fraction x in binary
> such as 2% > 10.01

Normalize the number (move the binary point to the left of
the most significant 1 - leftmost one) and adjust the
exponent, similar to scientific notation

> 10.01 *20=.1001 * 22, so 2 is the exponent value

Calculate the exponent by adding the excess value to the
exponent value:

» 2+4=6=110in binary
Figure out the sign - positive is 0
Put all together

> 01101001

10-9/17 CS101 55

Example 1: Represent Fractions in FP

Representing -3/8 in FP

- Remember if the number has a whole portion, the exponent

will be positive. If the number is 0 or a fraction, the exponent
will be 0 or negative

- -3/8=.011in binary

- normalize .11 * 27 (pad fraction =.1100)
- calculate exponent: -1 +4=3=011

- calculate sign: 1 for negative

- putittogether: 1011 1100

10-9/17 CS101 56

10-9/17

Example 2: Truncation Error

2>/, Original representation

}

10.101 Basetwo representation

.

1 01 01 Raw bit pattern

1010
| || | .
| — Lost bit
Mantissa
Exponent
Sign bit
CS101

57

Representing floating point

Most common forms are binary32 (single precision) and
binary64 (double precision)

Binary32 (single-precision FP, en.wikipedia.org/wiki/Binary32)

sign exponent (8 bits) fraction (23 bits)
| | I |

olof1|2{1|2|1|0|0]o|1|0]|0|0|0|0|0O[0|0O|O|0O|0O|0O|O|0O|O|0O|0O[0O|0O|0O|0O| = 0.15625
31 30 2322 (bit index) 0

value = (—)sien x <1+Zb23 i >><2(e 127)

Binary64(double-precision FP, en.wikipedia.org/wiki/Binary64)

exponent fraction
sign (11 bit) (52 bit)
I Il
o o o
63 52 0

Value— . s1gn <1+Zb52 :) x 96~ 1023

Error Detection

Parity bits ({517
- add an extra bit to each memory cell
- for odd parity
> count the number of 1s in memory cell

> set extra parity bit to O if value already contains an odd
number of 1s

> set parity bit to 1 if number of 1 bits is even

> so memory cell + parity bit will always have an odd number
of 1s

10-9/17 CS101 59

The ASCII codes for the letters A and F
adjusted for odd parity

Parity bit

ASCII A containing an even
number of 1s

1 01 0 0 0 O0 0 1

Total pattern has an odd
number of 1s

Parity bit ASCII F containing an odd

number of 1s

0 01 00 01 10

Total pattern has an odd
number of 1s

10-9/17

CS101

60

Main Memory & Mass Storage

\ \

Storage Devices

The commonly used storage devices

- Main memory: the bit at the left (high-order) end of the
conceptual row of bits in a memory cell

Massive storages
- Magnetic Systems
" Disk
" Tape
- Optical Systems
= (D
" DVD

- Flash Drives

10-9/17 CS101

62

Main Memory Cells

Cell: A unit of main memory
- typically 8 bits form one byte)

- Most significant bit: the bit at the left (high-order) end of
the conceptual row of bits in a memory cell

- Least significant bit: the bit at the right (low-order) end of
the conceptual row of bits in a memory cell

The organization of a byte-size memory cell

High-order end o 1 0 1 1 0 1 O Low-order end

Most Least
significant significant
bit bit

10-9/17 CS101 63

Main Memory Addresses

Address: A “name” that uniquely identifies one
cell in the computer’s main memory

- The names are actually numbers.

These numbers are assigned consecutively starting at
zero.

Numbering the cells in this manner associates an order
with the memory cells.

10-9/17 CS101 64

10-9/17

Memory Cells Arranged by Address

oooooo

10100001

000000

CS101

pointer (f5%1)

65

Memory Terminology

Random Access Memory (RAM)

- Memory in which individual cells can be easily accessed in
any order

Dynamic Memory (DRAM)

- RAM composed of volatile memory

10-9/17 CS101

66

Measuring Memory Capacity

Kilobyte: 210 bytes = 1024 bytes

- Example: 3 KB = 3 times 1024 bytes
- “kibi"” in short

Megabyte: 220 bytes = 1,048,576 bytes
- Example: 3 MB = 3 times 1,048,576 bytes
- “megi” in short

Gigabyte: 230 bytes = 1,073,741,824 bytes
- Example: 3 GB = 3 times 1,073,741,824 bytes
- “gigi” in short

Terabyte: 240 bytes
Petabyte: 2°° bytes
Exabyte: 2°0 bytes

10-9/17 CS101

Mass Storage

Why mass storage?

- On-line versus off-line

- Typically larger than main memory

- Typically less volatile than main memory
- Typically slower than main memory

Magnetic Systems
- Disk

- Tape

Optical Systems

- (D

- DVD

Flash Drives

10-9/17 CS101

68

A Magnetic Disk Storage System

Track divided
into sectors

Read/write head

Access arm

>

Arm motion

Disk motion

10-9/17 CS101

10-9/17

Tape reel

Magnetic Tape Storage

Take-up reel

Read/write
head

Tape motion

CS101

70

Compact Disc CD storage

Data recorded on a single track,
consisting of individual sectors,
that spirals toward the outer edge

10-9/17

Disk motion

CS101 71

CDs and DVDs

- Reflective material covered with clear protective coating.

- Information is recorded by creating variations in this
reflective surface

- High powered laser beams to created pits
- Low powered laser beam to retrieve data

- Smooth unpitted areais a 1, pitted area is interpreted as
al

10-9/17 CS101

72

Flash Drives

- Magneticc & optical devices require physical motion to
store and retrieve data

- slow

- In flash memory, bits are stored by sending electronic
signals directly to the storage medium where they cause
electrons to be trapped in tiny chambers of silicon
dioxide, thus altering the characteristics of small
electronic circuits

- Good for off-line storage, digital cameras, phones, PDAs

10-9/17 CS101 73

Files

File: A unit of data stored in mass storage system
- Fields and keyfields
- Operating System (OS)

Physical record versus Logical record

Buffer: A memory area used for the temporary storage
of data (usually as a step in transferring the data)

10-9/17 CS101

74

In-class Exercise

Convert the following decimal numbers to binary representation
- 911,17

- 216, 232 _’|

- 1/16,1/128, 5/8, 1/2¢

Convert the following binary representations to decimal values
- 101010, 111111, 0.011, 101.111

- 100...0 (with 10 zeros), 100...0 (with 20 zeros), 100...0 (with 30
Zeros),

- 11...1(with 30 ones)

10-9/17 CS101 75

THANKS

