
CBP: A New Parallelization Paradigm
for Massively Distributed Stream Processing

Qingsong Guo1(B) and Yongluan Zhou2

1 North University of China, Taiyuan, China
qingsongg@gmail.com

2 University of Southern Denmark, Odense, Denmark
zhou@imada.sdu.dk

Abstract. Resource efficiency is essential for distributed stream
processing engines (DSPEs), in which a streaming application is modeled
as an operator graph where each operator is parallelized into a number
of instances to meet the low-latency and high-throughput requirements.
The major objectives of optimizing resource efficiency in DSPEs include
minimizing the communication cost by collocating the tasks that trans-
fer a lot of data between each other, and by dynamically configuring the
systems according to the load variations at runtime. In the current liter-
ature, most proposals handle these two optimizations separately, and a
shallow integration of these techniques, such as performing the two opti-
mizations one after another, would result in a suboptimal solution. In this
paper, we present component-based parallelization (CBP), a new para-
digm for optimizing the resource efficiency of DSPEs, which provides a
framework for a deeper integration of the two optimizations. In the CBP
paradigm, the operators are encapsulated into a set of non-overlapping
components, in which operators are parallelized consistently, i.e., using
the same partitioning key, and hence the intra-component communica-
tion is eliminated. According to the changes of workload, each component
can be adaptively partitioned into multiple instances, each of which is
deployed on a computing node. We build a cost model to capture both
the communication cost and adaptation cost of a CBP plan, and then
propose several optimization algorithms. We implement the CBP scheme
and the optimization algorithms on top of Apache Storm, and verify its
efficiency by an extensive experiment study.

1 Introduction

Real-time big data analysis requires processing of continuous queries (CQ) over
fast streaming data with low latency. Usually, distributed stream processing
engines (DSPEs) [1,18,22] organize CQs as an operator graph as shown in
Fig. 1(a). To handle the deluge of data, one can resort to massive paralleliza-
tion that each operator is cloned with a number of instances and its inputs are

The author from North University of China is supported by National Nat-
ural Science Foundation of China (61602427) and Natural Science Foundation of
Shanxi(201601D202037).

c© Springer International Publishing AG 2017
S. Candan et al. (Eds.): DASFAA 2017, Part II, LNCS 10178, pp. 304–320, 2017.
DOI: 10.1007/978-3-319-55699-4 19

CBP: A New Parallelization Paradigm 305

o4
src sink

o1
o2

o3

o14

src sink

o11
o12

o13

o24o21
o22

o23

(a) Operator Graph

o14

src sink

o11

o12

o13

o24o21 o22

o23
s1

s2

s3

s4

s0 s5

s0, s1, s2:(Ts,Vid,Wid,Dir,Spd,Pos)

s5:(Vid,Dir,Seg,Toll)

s3:(Ts,Vid,Dir,Seg,AvgSpd)
s4:(Ts,Dir,Seg,VehNum)

(b) OBP (c) CBP

Fig. 1. Paradigms for parallelizing operator graph. This is a query that calculates
the tolls of vehicles based on the source stream s0 containing data of vehicles’ speeds
and positions. It consists of four operators: (1) a stateless operator o1 that filters and
partitions input data to the next operators; (2) two operators o2 and o3 calculate the
average speed AvgSpd and the traffic volume respectively; and (3) o4 calculates the toll
of each vehicle, which is a function of AvgSpd and SegNum. The format of streams are
specified in figure (a) and each operator oi is designated with key ki for partitioning
the streams, where k1 = {Ts, Vid, Spd, Dir, Seg, Pos}, k2 = {Vid, Dir, Seg}, k3 = {Dir,
Seg}, and k4 = {Dir, Seg}. We use two ways to parallelize the query: (1) in figure (b),
the input streams of the operators are partitioned with different keys; and (2) in figure
(c), the input streams of the four operators are partitioned consistently with the same
key {Dir, Seg}.

partitioned into disjoint substreams. For the sake of resource efficiency, there are
in general two critical optimizations to be considered:

1. Runtime resource reconfiguration. Load variations caused by the
changes of data distribution and input rate are ubiquitous in the stream-
ing context [22,24,25]. It is essential to provide adaptive data partitioning to
achieve load balancing and to scale the number of parallel instances of each
operator to avoid over-provisioning or under-provisioning.

2. Communication cost minimization. A large amount of data has to be
continuously transmitted among the neighboring operators. Data transfer not
only consumes bandwidth but also incurs significant computation overhead,
including serializing and de-serializing the transmitted data. Optimizing the
allocation of operator instances can to minimize cross-node communication
can significantly reduce the resource consumption in a DSPE.

In existing solutions, the two problems are addressed separately. For example,
M.A. Shah et al. [22] studied how to dynamically partition the input data at
runtime to balance the workload across the parallel instances of an operator,
while Y. Ahmad et al. [4] and P. Pietzuch et al. [19] investigated the operator
placement to minimize the bandwidth usage by implicitly assumed assumption
that operators do not need to be parallelized.

One can simply combine these methods to provide a complete solution. For
example, we can first determine the parallelism for each operator [1], and trans-
form the operator graph into a graph of operator instances. Thereafter, we can
optimize the deployment by applying an operator placement algorithm, such
as [4,19]. Suppose we have two nodes in the cluster, Fig. 1(b) shows a possi-
ble parallelization and task allocation plan for the operator graph in Fig. 1(a).

306 Q. Guo and Y. Zhou

Dynamic reconfigurations, such as re-scaling and load balancing, can be per-
formed on each operator independently. However, such a shallow integration
would provide suboptimal performance. As shown in Fig. 1(b), if the 4 operators
are not parallelized consistently, e.g., partitioning the input on the same key,
then each operator instance may have to transfer data to all its downstream
instances. This limits the opportunity to minimize communication cost by col-
locating the instances that communicate with each other.

On the contrary, if we can parallelize the operators consistently using a com-
mon partitioning key, then we could have a plan as shown in Fig. 1(c), which
minimizes cross-node communication. Although this idea may sound simple, it is
nevertheless challenging to implement in a DSPE supporting runtime reconfigu-
ration. First of all, dynamic data repartitioning makes it difficult or even impos-
sible to achieve consistent parallelization of multiple operators given that the
operators could be reconfigured at runtime independently. Secondly, dynamic
scaling and data repartitioning involve a lot of state movements [22,23]. The
overhead of moving the states around operator instances in order to maintain
the consistency of data partitioning may offset the benefits of collocating their
communicating instances. Therefore we need a new parallelization framework
that can optimize the parallelization of operators such that the total cost is
minimized, including the communication and reconfiguration cost.

To address the challenges, we present component-based parallelization
(CBP)—a new operator parallelization paradigm that considers both dynamic
reconfiguration and resource optimization. In CBP, an operator graph is first
decomposed into non-overlapping components, each being a connected subgraph.
The operators in a component should have partitioning keys “compatible” with
each other, i.e., sharing common attributes, and thus they can be parallelized
using the same key. Each component acts as a singleton that is parallelized into
a set of instances and the parallelism can be adapted at runtime in accordance
with the load variations. This strategy simplifies the optimization of parallel
stream processing and localizes the side-effect of reconfiguration within each
component. In general, in the CBP paradigm, the more operators are grouped
into a component, the less communication cost there would be, with a probable
increase of the component’s reconfiguration cost. This is because every time we
have to re-scale or re-balance one operator within a component, we have to
trigger repartitioning of all the operators within the component. Therefore, a
good trade-off should be found to minimize the total cost of a CBP plan.

We propose a cost-based optimizer to compute an optimized CBP plan for
a given query graph. We develop a novel cost model that integrates the recon-
figuration overhead into the optimization. We formally define the optimization
problem as a Minimum-Cost-Component-Based-Parallelization problem
(MCCBP). We prove that MCCBP is NP-hard, and then present two heuristic
algorithms to solve it. All the techniques have been implemented on top of
Apache Storm [1]. We compare our solutions with the operator placement algo-
rithm by using both synthetic workload and an extension of the Linear Road
Benchmark [6]. The experiments show that our methods can save the network

CBP: A New Parallelization Paradigm 307

communication by up to 40%. Furthermore, our solutions can reduce the average
end-to-end data latency by about 10% to 30%.

2 Background

2.1 Parallel Stream Processing

Continuous queries(CQs) [17] over streaming data are usually organized as
an operator graph [1,13,18] in a distributed stream processing engine (DSPE).
DSPEs like Flux [22] and StreamCloud [14] exploit data parallelism [11] to cope
with the deluge of data, in which an operator is cloned into a set of independent
instances each working on a partition of the input data. The number of parti-
tioning can be determined according the input rates to achieve high throughput.

Operators can be categorized as stateless and stateful. For a stateless opera-
tor, the input tuples can be processed independently by any instance of it. While
the stateful operators, such as join and group-by aggregate, are “context-
sensitive”, so tuples with the same keys should be processed by the same instance
to guarantee correctness. Stream grouping specifies the way how a stream of
tuples is grouped and dispatched to the consumer operator instances. We con-
sider two primitives: (1) shuffle grouping, where the input tuples are randomly
routed to the operator instances; (2) key grouping, in which tuples are parti-
tioned into a number of substreams based on a specified set of keys. Shuffle
grouping is often the optimal choice for stateless operators since the load can be
easily balanced, while key grouping is necessary for stateful operators.

Challenges of load variation. Usually, one can easily observe two kinds of
variations over streaming data: (1) the fluctuation of input rates [22,24], and (2)
change of data value distributions [22,24,25]. If an SPE does not react to the
variations, applications can run into problems:

– Unmatched provision: the over-provisioning or under-provisioning caused
by the fluctuation of the input rates can result in low system utilization, high
operational cost (e.g., using pay-as-you-go cloud services), and system failures.

– Load imbalance: the load distribution is skewed due to the change of data
value distribution. For example some stream grouping keys become more pop-
ular than the others so that some operator instances are over-loaded while the
others are under-loaded. Load imbalance can harm the processing latency and
system throughput if the skewness is not resolved soon.

To handle the above problems, we resort to adaptation techniques including
dynamic scaling [18] and load balancing [25]. CQs use the concept of sliding
windows of tuples over a stream to specify the operational context of an operator.
For instance, to perform a windowed join, we need to buffer the tuples within the
current window(s) as the context of the join operation on the newly incoming
tuples. This kind of context is called as processing state [8]. While processing
an adaptation, the substreams should be reassigned around operator instances,
and the processing states needs to be reallocated accordingly. This process is

308 Q. Guo and Y. Zhou

called state movement. Note that both scaling and load balancing involve state
movements, which consume both significant CPU and network bandwidth and
thus cannot be ignored [22,23].

2.2 System Model

Data model. A data stream s is an unbounded and append-only sequence of
tuples (. . . , ti−1, ti, ti+1, . . .). Each tuple t = (τ, α) has a timestamp τ ∈ T and
a set of attributes α = (a1, . . . , ak). We assume that the attribute set α of every
stream conforms to a relational schema. For simplicity, τ is assumed to be unique.
In practice, if τ is not unique, existing systems usually use a unique sequence
number to identify each tuple.

Operator model. A CQ is composed of a number of operators, each implement-
ing a certain computation logic, such as join, aggregate, filter, or user-defined
functions. An operator o is a 6-tuple, (INo, OUTo, Ko, Fo, Wo, PSo), where INo and
OUTo are the input and output streams respectively. Ko is the key, a subset of
attributes of the input streams INo, which used for partitioning INo. Fo defines
the processing logic, where its operating context, i.e. the processing state PSo, is
specified by the sliding window Wo. For stateless operators like map and filter,
PS = ∅.

We organize CQs as an operator graph G = (O, S), which is a directed acyclic
graph of the operator set O and the stream set S. A stream s ∈ S is represented
as a directed arc (us, ds), us, ds ∈ O, where us and ds are its producer and
consumer respectively. Two special operators, Src and Sink, are responsible for
spouting source streams and collecting the final results respectively. An operator
graph is also referred to as a topology and these two terms are interchangeable
throughout this paper.

Physical execution. The operator graph is executed on a cluster of identical
nodes. The execution graph is a physical realization of the query in which each
operator o is parallelized into multiple instances I = {o1, . . . , oπ}, where π ∈ N

+

is the parallelism. For an input stream s of o, each tuple is a key-value pair <k,v>,
where v is the tuple and k = t.Ko. A partitioning function split the domain of Ko

into p groups, where p � π. Then, the tuples of s, according their key values,
form a number of substreams S = {s1, . . . , sp}. An assignment F : S → I
allocate the processing of each substream to a unique operator instance. The
degree of parallelism π and the assignment F are adapted at runtime to handle
load variations.

3 Component-Based Parallelization

3.1 CBP Abstraction

In essence, CBP decomposes an operator graph into a set of non-overlapping
components, which act as the parallelization unit. In particular, CBP relies on

CBP: A New Parallelization Paradigm 309

two essential properties: compatibility and connectivity. Compatibility concerns
if some operators can be parallelized consistently. A set of operators {o1, . . . , ok}
is compatible iff the intersection of their keys is not empty, i.e., Ko1 ∩· · ·∩Kok

�= ∅.
Note that the compatibility property is not transitive. For example, suppose we
have three operators o1, o2, and o3 with keys K1 = {a1, a2}, K2 = {a2, a3}, and
K3 = {a1, a3} respectively. Even though any pair of them are compatible, they as
a whole are incompatible because K1 ∩ K2 ∩ K3 = ∅. The rationale of assembling
the topology into components is to reduce the communication cost. One can
benefit from placing compatible operators into a node only if they are connected
by streams.

Formally, we can define a component as follow.

Definition 1 (Component). A component C = (OC, SC) is an induced sub-
graph of the operator graph G = (O, S), where C is connected and the operators in
OC are compatible.

Let IN(C) be the set of all input streams of the operators in component C,
then IN(C) = ∪o∈OCINo. Assuming OC = {o1, . . . , o|C|}. The streams of IN(C) can
be grouped by a partition function over the key K = Ko1 ∩ · · · ∩ Ko|C| , which is
the intersection of the keys of all the operators in C. Since K �= ∅, all the streams
of IN(C) can be partitioned uniformly into p substreams. For the convenience
of discussion, we regard the streams in IN(C) as a composite stream cs, which
is partitioned into a set of substreams CS = {cs1, . . . , csp}. In addition, each
component C is parallelized into a number of instances CI = {ci1, . . . , ciπ},
where π is the parallelism of C and each instance has a clone of the computation
logic of each operator in C. The parallel processing of the composite stream CS
is specified by an assignment FC : CS → CI, which is adapted at runtime to
handle load variations.

4 MCCBP

4.1 Metrics

The cost of a CBP plan can be put into three parts: (1) Processing cost PC,
which is the CPU usage of the computation, (2) Communication cost CC, which
is the CPU and network usages of data transmission, and (3) Adaptation cost
AC, which is the CPU and network usages of carrying out adaptations.

In particular, we assume that PC keeps the same regardless of the physical
execution, and thus it can be disregarded in our cost model. In addition, we
categorize data communication into inter-component communication and intra-
component communication. The first one involves three sequential steps: (1) data
serialization, (2) network propagation, and (3) de-serialization. Steps (1) and
(3) consume CPU cycles and step (2) occupies network bandwidth. In contrast,
the intra-component communication is realized via local memory access, whose
overhead is negligible. Therefore, we only take the overhead of inter-component
communication into account.

310 Q. Guo and Y. Zhou

Statistics measurements. The cost calculation relies on the statistics of exe-
cution of the operator graph. In our implementation, the statistics are measured
periodically over a sequence of time intervals of length Δ, which are called as
statistics windows. Suppose the historical data spans m statistics windows that
start at the time instance τ = 0, then the timespan of historical data is [0,mΔ].
The following discussions are confined within the timespan [0,mΔ].

For the input stream s ∈ S of a component that is split into p partitions,
the statistics are represented as a sequence of histograms Y (s) = (Y1, . . . , Ym),
where the histogram Yr = (y1,r, . . . , yp,r)T , r = 1 . . . m, is a vector recording the
data rate of the p partitions over the r-th statistics window. In other words, the
data distribution of s at the r-th window can be approximated with Yr. With
Y , we can derive other statistics on demands. For instance, denote s = (oi, oj),
then the load lij of s during [0,mΔ] is lij =

∑m
r=1

∑p
k=1 ykr.

The adaptation cost is closely related to the adaptation frequency f , where
Δ = 1/f. For simplicity, we assume that SPE performs an adaptation at each win-
dow. Letψr

i be the number of state movements in the r-th adaptation of component
Ci, then AC =

∑|C|
i=1 ψi, where ψi =

∑m
r=1 ψr

i is the adaptation cost of Ci.

4.2 Problem Formulation

Consider an operator graph that is grouped into a set of disjoint components
C = {C1, C2, . . . }, it is called a CBP plan if ∪|C|

i=1OCi = O and OCi ∩ OCj = ∅ for
any two components of C. Let X be the streams interconnecting components in
C. Let w(Ci) be the adaptation cost of Ci and c(s) be the communication cost
incurred by stream s. Since PC is independent on the CBP plan, the cost of a
CBP plan C, denoted as cost(C), is measured by the sum of the communication
cost CC and adaptation cost AC. That is,

cost(C) = CC + AC =
∑

s∈X

c(s) +
∑

Ci∈C
w(Ci) (1)

We introduce a constraint on the adaptation cost, w(Ci) ≤ β, to prevent any
component from being the bottleneck. Consequently, the objective of optimiz-
ing a CBP plan is to minimize cost(C). We denote this problem as Minimum
Cost Component-Based Parallelization (MCCBP), which is a variant of
graph partitioning problem under constraints of connectivity and compatibility.
Formally, it is stated as follow.

Definition 2 (MCCBP). Given an operator graph G = (O, S) and a positive
constant β, the MCCBP problem is to find a CBP plan, which is a partition of
G into a set of disjoint components C = {C1, C2 . . . }, to achieve the following
objective:

minimize cost(C)

subject to ∪|C|
i=1OCi = O

w(Ci) ≤ β

CBP: A New Parallelization Paradigm 311

MCCBP can be proved to be NP-hard by simplifying it to a Minimum-
Capacity-Graph-Partitioning (MCGP) problem, which has been shown to be
NP-hard.

5 Computing CBP Plans

5.1 Greedy Algorithm

A straightforward idea is to obtain an initial CBP plan C0 in advance, and
then make improvement incrementally. The algorithm, as shown in Algorithm 1,
begins with the initial plan C0 (Line 2) and makes improvement step by step
(Line 9–21). The initial plan C0 is generated by a depth-first search (DFS) of
the operator graph. The traversal is tracked by an operator stack OS. In each
iteration, we peek an operator from OS. Let o be the current operator being
visited and C(o) be the component containing o. Then o will be popped out from
OS if it has no unvisited child or is a leaf node. Otherwise we choose an unvisited
child v of o and then check the compatibility between v and C(o). If they are
compatible, v will be added into component C(o); Otherwise, a new component
Ci containing operator v is created.

The essence of Algorithm 1 is to reduce the cost by moving operators around
components. Let move(Ci,Cj ,ok) be the potential movement that attempts to
move ok from Ci to Cj . It is admissible if ok ∈ Ci and the new operator set
Cj ∪ {ok} can form a component. Given a CBP plan C, the execution of the
potential movement move(C1,C2,ok) gives rise to a new plan C′ if it is admissible.
The admissibility of it is checked in Line 8.

The movement results in the following change of costs: (1) the change of
communication cost between C1 and C2, and (2) the change of adaptation costs
of C1 and C2. Hence the profit δ12(ok) of move(C1,C2,ok) consists of two parts:
the changes of the communication cost and adaptation cost, denoted as δ112(ok)
and δ212(ok) respectively. Let ϕ1(ok) be the data rate between ok and C1. Then,
ϕ1(ok) =

∑
(ok,ot)∈S∨(ot,ok)∈S

ot∈C1

lkt. ϕ1(ok) does not contribute to CC if ok ∈ C1,

otherwise it does. After the movement, ϕi(ok) contributes to CC, but ϕj(ok) does
not contribute to CC. Therefore, the gain on communication cost is δ112(ok) =
ϕ2(ok) − ϕ1(ok). Let ψ(ok) be the new adaptation cost of a component, then we
have δ212(ok) = (ψ1 + ψ2) − (ψ1(ok) + ψ2(ok)).

Summing all together, we get the overall profit of the movement, δ12(ok) =
δ112(ok) + δ212(ok). In each run, we choose an admissible movement with the
maximum positive profit to execute. Suppose that δ12(ok) is the best movement
in the current run, then the load and state statistics of C1 and C2 should be
changed after the execution of move(C1,C2,ok) (Line 14). The movement also
causes changes of the profits of any admissible movement involving C1 or C2. To
prepare the next iteration, we should recompute the profits of these admissible
movements (Line 15).

312 Q. Guo and Y. Zhou

Algorithm 1. Greedy Algorithm
Input: Operator graph G = (O, S), load statistics {Y(s1),Y(s2), . . . }, state

statistics {Z(o1),Z(o2), . . . }
Output: CBP plan C

1 C ← InitialPartition(G);
2 compute load statistics Y(Ci), state statistics Z(Ci), and adaptation cost ψi for

each component Ci ∈ C ;
3 δ ← 1.0 ;
4 while δ > 0 do
5 foreach ok ∈ O do
6 Ci ← get the component containing ok ;
7 foreach Cj ∈ |C| and j �= i do
8 if ajk �= −1 and Cj ∪ {ok} is compatible then
9 δ1ij(ok) ← �jk − �ik ;

10 δ2ij(oj) ← (ψi + ψj) − (ψi(ok) + ψj(ok)) ;
11 δij(ok) ← δ1ij(ok) + δ2ij(ok) ;

12 δ ← max{δij(ok)} ;
13 move ok from Ci to Cj ;
14 update the load and state statistics of C1 and C2;
15 recompute the profits for any admissible movement involves Ci or Cj ;

16 return C;

5.2 MWSC

We proceed to consider an alternative that transforms MCCBP into the mini-
mum weighted set cover problem (MWSC). Let Ω = {C1, C2, . . . } be a set con-
taining all the possible components of O. Let N be the cardinality of Ω, i.e.,
N = |Ω|. A CBP plan C = {Ci|Ci ∈ Ω} is a subset of Ω. It is apparent that
the plan C is a set cover of O, since

⋃|C|
i=1 Ci = O and Ci ∩ Cj = ∅ for ∀Ci, Cj ∈ C.

Therefore, MCCBP is equivalent to find a subset C of Ω such that C is a parti-
tion of O. We attempt to optimize this problem by enumerating all the feasible
components and finding the optimal CBP plan from them.

Each component associates with adaptation cost ψi and intra-component
communication cost φi, where φi =

∑
oi,oj∈C lij . For each component Ci ∈ Ω, we

assign a weight wi to it such that wi = ψi + l − φi, where l is the overall load,
l =

∑n
i=1

∑n
j=1 lij . It is obvious that ψi > 0 and l − φi ≥ 0.

Let xi be a decision variable that indicates whether component Ci is chosen
in the set cover S, where xi = 1 if Ci is picked, or xi = 0 otherwise. Then the
MCCBP is transformed to the weighted set cover problem. A set cover S of O
has some redundant operators, for example Ci ∩ Cj = ok. Denote S ′ as the new
set cover by discarding ok. Since ψi > 0 and l−φi ≥ 0, the cost of S ′ is definitely
smaller than that of the former one, i.e., w(S ′) < w(S). Finally, we can get the
minimum set cover of O by removing all the redundant operators.

CBP: A New Parallelization Paradigm 313

Algorithm 2. MWSC
Input: Operator graph G = (O, S) , load statistics {Y(s1),Y(s2), . . . }, state

statistics {Z(o1),Z(o2), . . . }
Output: CBP plan C

1 l ←∑n
i=1

∑n
j=1 lij ; /* overall loads */

2 Ω ← Enumerate(G, k) ;
3 foreach component Ci in Ω do
4 compute the adaptation cost ψi ;
5 φi ←∑oi,oj∈C lij ;

6 wi ← ψi + l − φi ; /* weight of Ci */

7 S ← compute the MWSC of O over Ω ;
8 C ← S ;
9 return C;

Definition 3 (MWSC). Given a universe O and a family Ω of subsets of
O, the minimum weighted set cover of O can be expressed as an integer linear
programming:

minimize w(S) = wTx (2)

subject to

N∑

Ci:o∈Ci

xi ≥ 1 for each operator o ∈ O,

xi ∈ {0, 1}
where w = (w1, . . . , wN) is the weight vector and x = (x1, . . . , xN) is the decision
vector for Ω respectively.

Apparently, a MWSC is a partition of O. Thus,

w(S) =
N∑

i=1

xiψi + |S|l −
N∑

i=1

xiφi =
N∑

i=1

xiψi

︸ ︷︷ ︸
+

[
l −

N∑

i=1

xiφi

]

︸ ︷︷ ︸
+ (|S| − 1)l︸ ︷︷ ︸ (3)

where |S| is the number of edges of G = (O, S).
Comparing to the cost model Eq. (1), we have the first component

∑N
i=1 xiψi

and the second l−∑N
i=1 xiφi of Eq. (3) equal to the adaptation cost AC and com-

munication cost CC respectively. As the third component (|S|−1)l is a constant,
the best solution of MWSC is equivalent to the optimal CBP plan.

The idea is depicted in Algorithm 2. We first enumerate all the possible
components of G (Line 2). Then we compute the adaptation cost ψi and the
load φi of each component Ci, and assign a weight to each component (Line
3–6). Finally, we compute a solution S of MWSC and take it as a CBP plan
by discarding all the redundant operators (Line 7–8). MWSC can be solved
exactly with a MIP solver like Gurobi [2] when N is not too large. But we also
implement a greedy routine to solve MWSC (Line 7) according to the description

314 Q. Guo and Y. Zhou

in [9, Chap. 35]. The greedy routine is a useful option when N is large. Since the
set cover S obtained through the greedy routine might not be a CBP plan, we
have to remove the redundant operators to get the final solution C.

6 Evaluation

6.1 Experimental Setup

Evaluation metrics—We use the following metrics in the evaluation:

– Communication cost counts the number of tuples transmitted through
inter-component communication.

– Adaptation cost counts the number of state movements in an adaptation
process.

– End-to-end latency indicates the time completing the processing of a source
tuple. It includes the time spent on processing, adaptation, and communica-
tion, and thus it is a overall metric to reflect the effectiveness of CBP.

Tested solutions—We implement the sparse-cut algorithm, a graph partition
algorithm used in COLA [15], to compare with our solutions. Note that the
objective of baseline is merely to minimize communication cost. In general, we
evaluated the following three algorithms: (1) greedy algorithm, (2) the MWSC
algorithm, and (3) the baseline algorithm which implements an OBP-based oper-
ator placement algorithm in [15].

We implement our algorithms in Java and integrate them with Apache
Storm [1] by extending it with runtime adaptation. Part of the experiments
are conducted via simulation, while the rest are conducted on Amazon’s EC2
with medium VM instances (m1.medium), where each has 1.7 GB of RAM, mod-
erate IO performance and one EC2 compute unit (approximately equivalent to
a 1.2 GHz 2007 Xeon CPU). While these VMs have low processing capabilities,
they are representatives of public cloud VMs.

6.2 Simulation Result

In the test, we used a randomized topology G = (O, S). In the topology G, each
operator o, except src, maintains computing states and randomly forwards the
received data to downstream operators according to the selectivity δ(o). The
specific setting of G is summarized in Fig. 2. Operator src generates two syn-
thetic streams s1 and s2 to simulate two types of variations, where the key
values of s1 and s2 follow the uniform distribution and Zipf respectively. There-
fore, s1 only results in scaling. In contrast, data distribution of s2 is skewed
and thus the adaptations involve both scaling and load balancing. Each opera-
tor of G randomly chooses two attribute of sch as the partition key. The data
arrivals of s1 and s2 follow a Poisson process X(t) : P [N(t + τ) − N(t) = k] =
(k!)−1e−λτ (λτ)k, where τ is set to 1 s and λ = 10, 000. Both s1 and s2 conform to

CBP: A New Parallelization Paradigm 315

Parameters Settings

Random graph G = (O, S, d)
Number of operators |O| = 100
Average degree d d = {3, 5, 10}
Selectivity δ(o) δ(o) ∼ N(0.5, 1.0)
Size of states |PSo| |PSo| = X(t)

Fig. 2. Setting of parameters

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(a) stream s1

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(b) stream s2

Fig. 3. Comparison of communication costs

the schema: SynStream(ts:Unix timestamp, a1:int, a2:int, a3:int, a4:int), in which
each attribute has 4 Bytes.

We measured the communication cost and state movements by varying the
average degree d and the adaptation frequency f . Let N1 be the number of tuples
processed by all the operators and N2 be the number of tuples in the states of
all the operators at every adaptation. We calculated the percentages, 100nc

N1
and

100na

N2
, of tuples involved in the communication and state movement, where nc

and na are the communication cost and adaptation cost respectively.
Comparison of communication costs—Figure 3a and b show the percent-

ages achieved by three algorithms. We can observe that the baseline algorithm
can save the cost by at most 20%, but the CBP solutions can reduce the cost by
at least 20%. In particular, the greedy algorithm saves about 20% when d = 3,
and it increases to 40% when d = 10. MWSC outperforms the greedy algorithm.
It significantly reduces the communication cost by about 27.8% when d = 3 and
by nearly 60% when d = 10. The baseline algorithm deploys the operator graph
based on a placement plan, which is generated in advance by graph partitioning.
Since the operators are incompatible, the physical topology of the query changes
as adaptation process. The parallelization plan is no longer optimal when the
physical topology has been changed. Therefore, we cannot optimize the commu-
nication cost efficiently with operator placement.

The intra-component communications of a CBP plan are eliminated com-
pletely regardless of the change of physical topology. This is confirmed by Fig. 3.
By comparing Fig. 3a and b, the communication costs of CBP solutions keep
the same regardless of the difference of s1 and s2. However, the costs of base-
line algorithm is slightly different over s1 and s2, where the cost is about 3%
higher over s2 than that over s1. The frequency f shows similar impact to the
algorithms.

Comparison of adaptation costs—Figures 4 and 5 shows the impact of
load variation and the adaptation frequency. In this experiment, the frequency
f is varied by changing the length of adaptation window from 1 min to 10 min,
i.e., 1/f = {1, 2, 5, 10}. Figure 4 plots the adaptation cost of each algorithm when
1/f = 1. It is clear that CBP has larger adaptation costs than the baseline
algorithm. Moreover, the adaptation cost over a skewed stream, s2 in Fig. 4b, is
higher than the uniformly distributed stream, s1 in Fig. 4a. We observe similar

316 Q. Guo and Y. Zhou

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(a) stream s1

 0

 20

 40

 60

 80

 100

3 5 10

Pe
rc

en
ta

ge
 %

Average degree d

baseline
greedy
mwsc

(b) stream s2

Fig. 4. Comparison of adaptation costs

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 %

1/f: length of adaptation window

baseline
greedy
mwsc

(a) stream s1

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

Pe
rc

en
ta

ge
 %

1/f: length of adaptation window

baseline
greedy
mwsc

(b) stream s2

Fig. 5. Adaptation costs with respect
to 1/f

O1

O2

O3

O4

O5src
S0

S1

S2
S3

S4

S6

S5

S8

S7

O6

S9

sink

Schema
(Ts, Vid, XWay, Dir, Seg, Spd, Pos) S1, S2, S3
(Ts, Vid, XWay, Dir, Seg, Acdt) S4
(Ts, Vid, XWay, Dir, Seg, AvgSpd) S5
(Ts, XWay, Dir, Seg, VehNum) S6
(Ts, Vid, XWay, Dir, Seg, Acdt) S7
(Ts, Vid, XWay, Dir, Seg, Toll) S8

ID
{Ts, Vid, XWay, Dir,O1:Forwarder

O3:AvgSpeed {Vid, XWay, Dir, Seg}
O2:AcdDetector {Ts, Vid}

O5:TollCalculator {Xway, Dir, Seg}
O4:SegVolume {Xway, Dir, Seg}

Partition KeyOperator

Seg, Spd, Pos, Type}

Fig. 6. Operator graph for LRB

results when f = {2, 5, 10}. The results also justify an implicit assumption in this
paper that the adaptation cost is normally higher when we assemble operators
into components.

Figure 5 shows the impact of adaptation frequency f . As we can see from the
figure, the cost drops greatly at the beginning when we increase 1/f. The number
of state movements is determined by two factors: (1) the adaptation frequency
f , and (2) the skewness of the data. The skewness usually goes serious if we
increase 1/f, i.e., it always involves more state movements in a single adaptation.
As we expected, the decline of adaptation cost is much gentle when 1/f is larger.

6.3 End-to-End Latency

We proceed to evaluate the end-to-end latency of the tested solutions. In this
experiment, we use the Linear Road Benchmark (LRB) [6]. LRB models a road
toll network, in which tolls depend on the level of congestion. The primitive
LRB gadget only has 7 operators, which is too small to represent a large-scale
computation. So we extend it by connecting a number of LRB gadgets together
with a road network. The road network G = (V, E) is a graph where an edge
e ∈ E stands for an expressway of LRB and a vertex v ∈ V represents the joint
of expressways. This extension has a wide range of applications. If we want to
measure the traffic between two locations or track the route of a vehicle, then an
LRB gadget must dispatch result to its downstream LRB gadgets. Consequently,
we introduce a new operator o6 to calculate the traffic between every pairs of
vertices every 1 min. Figure 6 shows the topology of the extended LRB, where
some new streams (blue dashed arcs), have been added into a LRB gadget to
fulfill the requirement.

CBP: A New Parallelization Paradigm 317

Table 1. Statistics about end-to-end latency (ms)

Mean Median 95% Maximum

1/f 1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10

Greedy 677 610 566 617 141 121 109 116 1501 1236 1095 1130 2825 2223 1736 2117

MWSC 583 517 534 602 131 120 97 118 1532 1333 1054 1171 3103 2703 1853 1853

Baseline 775 710 673 681 153 137 114 127 1017 928 856 889 2109 1809 1673 1681

G = (V, E) is generated with the random graph presented in Sect. 6.2. In
particular, |V| = 10, |E| = 30, and the average degree d = 3. Therefore, we have
30 LRB gadgets and 180 operators in total excluding srcs and sinks. For each
LRB gadget, the data rate of the source stream is controlled with the Poisson
process used in the previous section. The experiments are conducted on EC2
with 30 VMs and accomplished in two phases: (1) We first deploy it over EC2,
and keep it running for two hours to collect statistics. The length of statistic
window is set to 1 min. (2) With the statistics, we partition the topology into
components or subgraphs with the tested algorithms. Thereafter, we deploy the
partitioned topology on EC2 and run the experiments.

We measure the end-to-end latency at 4 scales of the adaptation frequency
f , i.e., 1/f = {1, 2, 5, 10}. The latency values are given in Table 1, where “95%”
is the 95th percentile of latency. In general, the results follow what we expected.
By comparing the mean, we observe that our algorithms reduce the latencies
by about 10%–25%. It shows that the CBP algorithm can indeed improve the
performance and thus confirms the effectiveness of CBP. We can further iden-
tify the impacts of adaptation process and load imbalance in these values. For
example, the CBP algorithms are more sensitive to adaptation process and load
imbalance comparing to the greedy algorithm. The maximum latency is 3103 ms
for MWSC when 1/f = 1, which is higher than the maximum latency of Baseline.

Tuples with a latency smaller than the median are less affected by the adap-
tation process and load imbalance. In contrast, tuples with latencies larger than
95-th percentiles are greatly affected by the adaptation process and load imbal-
ance. We take the latency when 1/f = 1 as an example, the medians of MWSC
and Greedy are about 75% and 87% of that of Baseline. So the results confirm
that CBP can save communication cost efficiently. In contrast, the 95-th per-
centiles for MWSC and Greedy are about 29% and 26% greater than the baseline
algorithm.

During an adaptation, input tuples are buffered by the upstream operators.
The tuples will be replayed to downstream after the completion of adaptation.
Therefore, adaptation process increases the end-to-end latencies for a portion
of tuples. As we can see from the table, the maximum latency peaks up to
about 3 s.

For each algorithm, each numeral characteristic drops with the increase of
1/f at first and then grow with the increase of 1/f on the contrary. This behavior
is obvious for the 95-th percentile. In terms of the 95-th percentile, it is obvi-
ous MWSC is higher than Greedy and Baseline. This phenomena confirms the

318 Q. Guo and Y. Zhou

impact of adaptation process and load imbalance. The adaptation cost drops
with the increase of 1/f, but load imbalance get worse on the contrary. Thus
we observe that all lines are concave. It means that the adaptation frequency is
very important as it can trade off between impact of adaptation cost and load
imbalance. In this experiment, f = 1/2 is the best choice for MWSC and f = 1/5
is the best choice for Greedy and Baseline.

7 Related Work

Parallel stream processing. Much work has been focused on exploiting par-
allelism in stream processing. The early SPEs aim at providing transparent par-
allelization for distributed stream processing in a shared-nothing environment.
Aurora [7] and Borealis [3] supports intra-query parallelism by organizing a
topology into a set of boxes and conducting parallelization via box-splitting.

Many SPE proposals, e.g., System S [5] and Flux [22], leverage partitioned
parallelism [11] to improve scalability. They propose new “Exchange” operators
between stream producers and consumers to encapsulate the adaptive state par-
titioning and stream routing. In recent years, many efforts have been made to
improve the scalability of parallelization [12,20,21]. The MapReduce model [10]
enables programmer to think in a data-centric fashion and hence provides a prac-
tical implementation for partitioned parallelism. Distributed SPEs like Apache
Storm [1], Yahoo! S4 [18], and StreamCloud [14] are inspired by such a model.

Operator placement. If an application is geographically distributed, the
transmission latency is sensitive to the communication channels. The SAND
project [4] exploits the knowledge of the underlying network characteristics such
as topology and link bandwidths to make intelligent in-network placement of
query graph. In contrast, [19] develops a stream-based overlay network (SBON)
over Borealis, which is a network-aware optimization framework that manages
operator placement within a pool of wide-area overlay nodes in order to make
efficient use of network bandwidth. The placement decisions are made based on
the cost space that encodes multidimensional metrics such as latency and load.

COLA [15] employs graph-partitioning algorithms to compute an optimal
allocation of operators with regard to a cost model that captures the communi-
cation and CPU costs. The operator graph is partitioned into processing elements
(PE) at compile-time, which acts as a deployable unit. COLA aims at balanc-
ing load across the processing nodes and minimizing the communication cost of
the PEs. It only measures the CPU cost incurred by processing and communi-
cating, but ignores the network bandwidth usage. In addition, COLA does not
consider how to parallel the operators. Moreover a partition plan obtained at
compile-time is incapable to handle the load variations at runtime.

The essence of operator placement is to optimize an assignment of operators
to the computing nodes based on an objective function. Unfortunately, the exist-
ing solutions are static and the cost of the state migration cannot be ignored in
the presence of load variations. For more detailed comparisons of the placement
strategies, please refer to a survey paper [16].

CBP: A New Parallelization Paradigm 319

8 Conclusion

We present CBP, a succinct parallelization paradigm for DSPEs that leverages
both the connectivity and compatibility of operators. CBP seamlessly integrates
operator placement with parallelization and thereby provides a framework to
integrate the optimizations of runtime resource reconfiguration and communica-
tion cost minimization. Furthermore, we introduce a cost model that captures
the cost of communication and adaptation. Two algorithms are proposed to opti-
mize the CBP plans for a given computation. The extensive experiments confirm
that an optimized CBP plan can improve the resource efficiency of DSPEs sig-
nificantly.

References

1. Apache Storm. http://storm.apache.org/
2. Gurobi Parallel MIP solver. http://www.gurobi.com/resources/getting-started/

mip-basics
3. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,

J.-H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The design of the borealis stream processing engine. In: CIDR 2005,
Asilomar, CA, January 2005

4. Ahmad, Y., Çetintemel, U.: Network-aware query processing for stream-based
applications. In: VLDB 2004, vol. 30, pp. 456–467 (2004)

5. Andrade, H., Gedik, B., Wu, K., Yu, P.S.: Scale-up strategies for processing high-
rate data streams in system S. In: ICDE 2009

6. Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A., Ryvkina, E., Stone-
braker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In
VLDB 2004

7. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data man-
agement applications. In: VLDB 2002, pp. 215–226 (2002)

8. Castro Fernandez, R., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.: Integrating
scale out and fault tolerance in stream processing using operator state manage-
ment. In: SIGMOD 2013, pp. 725–736. ACM, New York (2013)

9. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
In: OSDI 2004, vol. 6. USENIX Association, Berkeley (2004)

11. DeWitt, D., Gray, J.: Parallel database systems: the future of high performance
database systems. Commun. ACM 35(6), 85–98 (1992)

12. Gedik, B., Schneider, S., Hirzel, M., Wu, K.-L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25, 1447–1463 (2010)

13. Graefe, G.: Encapsulation of parallelism in the volcano query processing system.
In: SIGMOD 1990, pp. 102–111. ACM (1990)

14. Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Valduriez, P.: StreamCloud:
a large scale data streaming system. In: ICDCS 2010, pp. 126–137 (2010)

15. Khandekar, R., Hildrum, K., Parekh, S., Rajan, D., Wolf, J., Wu, K.-L., Andrade,
H., Gedik, B.: COLA: optimizing stream processing applications via graph parti-
tioning. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896,
pp. 308–327. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10445-9 16

http://storm.apache.org/
http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics
http://dx.doi.org/10.1007/978-3-642-10445-9_16

320 Q. Guo and Y. Zhou

16. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data
stream systems. IEEE Internet Comput. 12(6), 50–60 (2008)

17. Motwani, R., Widom, J., et al.: Query processing, resource management, and
approximation in a data stream management system. In: CIDR 2003, pp. 245–
256, January 2003

18. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing
platform. In: ICDMW 2010, pp. 170–177. IEEE Computer Society, Washington,
DC (2010)

19. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: ICDE 2006.
IEEE (2006)

20. Schneider, S., Andrade, H., Gedik, B., Biem, A., Wu, K.-L.: Elastic scaling of data
parallel operators in stream processing. In: IPDPS, pp. 1–12 (2009)

21. Schneider, S., Hirzel, M., Gedik, B., Wu, K.-L.: Auto-parallelizing stateful distrib-
uted streaming applications. In: PACT 2012, pp. 53–64. ACM, New York (2012)

22. Shah, M.A., Chandrasekaran, S., Hellerstein, J.M., Franklin, M.J.:. Flux: an adap-
tive partitioning operator for continuous query systems. In: ICDE, pp. 25–36 (2002)

23. Wu, S., Kumar, V., Wu, K.-L., Ooi, B.C.: Parallelizing stateful operators in a
distributed stream processing system: how, should you and how much? In: DEBS
2012, pp. 278–289 (2012)

24. Xing, Y., Hwang, J.-H., Çetintemel, U., Zdonik, S.: Providing resiliency to load
variations in distributed stream processing. In: VLDB 2006, pp. 775–786. VLDB
Endowment (2006)

25. Xing, Y., Zdonik, S., Hwang, J.-H.: Dynamic load distribution in the borealis
stream processor. In: ICDE 2005, pp. 791–802. IEEE Computer Society (2005)

