
Stateful Load Balancing for Parallel Stream
Processing

Qingsong Guo1(B) and Yongluan Zhou2

1 North University of China, Taiyuan, China
qingsongg@gmail.com

2 University of Copenhagen, Copenhagen, Denmark
zhou@di.ku.dk

Abstract. Timely processing of streams in parallel requires dynamic
load balancing to diminish skewness of data. In this paper we study
this problem for stateful operators with key grouping for which the pro-
cess of load balancing involves a lot of state movements. Consequently,
load balancing is a bi-objective optimization problem, namely Minimum-
Cost-Load-Balance (MCLB). We address MCLB with two approxi-
mate algorithms by a certain relaxation of the objectives: (1) a greedy
algorithm ELB performs load balancing eagerly but relaxes the objec-
tive of load imbalance to a range; and (2) a periodic algorithm CLB
aims at reducing load imbalance via a greedy procedure of minimizing
the covariance of substreams but ignores the objective of state movement
by amortizing the overhead of it over a relative long period. We evaluate
our approaches with both synthetic and real data. The results show that
they can adapt effectively to load variations and improve latency effi-
ciently comparing to the existing solutions whom ignored the overhead
of state movement in stateful load balancing.
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1 Introduction

Timely processing of big streaming data on a cluster of commodity machines
is the major concern for a stream processing engines (SPEs) like Storm [1].
Usually, a streaming computation is represented as an operator graph in which
vertices stand for operators and an arc in the graph represents a data stream
flowing between a pair of operators called producer and consumer respectively.
To handle data deluge, a SPE exploits data parallelism that splits a stream
into a number of disjoint substreams processed independently by a collection of
parallel instances.

Process a stream in parallel relies on the grouping scheme for dispatching
tuples to the instances of its consumer. Typically, there are two primitives of our
interest: (1) shuffle grouping and (2) key grouping [10]. In shuffle grouping, tuples
are randomly routed to downstream instances. It fits for stateless operators like
c© Springer International Publishing AG, part of Springer Nature 2018
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map and filter, which are content-oblivious so that a tuple can be processed by
any instances. In contrast, the key grouping partitions a stream into a number
of substreams based on the key, i.e., a set of attributes, where tuples have equal
values on key will be dispatched to the same instances. Stateful operators like
window-join are content-sensitive since tuples with the same value should be
processed by the same instance. Therefore, key grouping is preferable for stateful
operators.

In this paper, we concern the problem of balancing load for stateful opera-
tors implementing key grouping. For a stateless operator with shuffle grouping,
its load can be balanced evenly in a round-robin manner. However, it becomes
much challenging in our context since the key grouping results in load imbalance.
A substantial feature of stream processing is that data is in a state of cease-
less change [13,15,16]. Load variations like fluctuation of data rate and change
in data distribution are ubiquitous, especially for such applications with their
sources geographically located. If the load distribution is skewed on the partition
key, the number of tuples handled by instances vary greatly. The computation
will often be situated in an erratic state if we do not react to the imbalance,
which is a disaster for processing latency if the state lasts for a long time.

Load balancing has received much attention in distributed stream processing
[2,15,16]. Xing et al. [16] presented a correlation-based load distribution policy
for a homogeneous shared nothing cluster. They focused on balancing load for
a whole operator graph with an implicit assumption that every operator is not
parallelized. In contrast, we focus on balancing load for a single operator with
very high volume of load. In addition, load balancing has been also addressed for
stateless operators with key grouping [10]. The impact of processing state has
been widely studied in parallel stream processing [12,14], but it rarely brings
about any attention to load balancing. In the presence of state, it involves a lot
of state movements in load balancing because we have to change the allocations
for many substreams. This problem is referred to as stateful load balancing and
we formally define it as Minimum-Cost-Load-Balance (MCLB). It associates
two objectives: (1) minimize imbalance of all instances as much as possible; and
(2) minimize the state movements as many as possible.

Unfortunately, the two objectives of MCLB can not be optimized consistently
since they conflict with each other. Timely processing of data stream relies on
efficient algorithms to address this dilemma. We propose two approximate algo-
rithms for MCLB by relaxing the constraint on load imbalance: (1) ELB that
balances the load eagerly, and thus has expensive cost of state movements; and
(2) an algorithm CLB based on a procedure of minimizing correlations, that
performs the load balancing periodically, where the cost for state movement is
amortized and which is negligible when the period length is long enough. We
evaluate the algorithms, with both synthetic streams and real datasets, and
compare them with the exiting solutions. The experimental results justify the
advantage of our solutions.
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1.1 Related Work

Load balancing has received much attention in the last decade for its application
in the peer-to-peer system [4] and cloud computing [11]. These approaches are
static and hence are insufficient for a streaming scenario in which data is in
ceaseless change [5]. Madsen et al. [8,9] recognized the problem of stateful load
balancing while optimizing cluster utilization and minimizing latency for parallel
stream processing. They modeled it as a Mixed-Integer Linear Program (MILP)
problem and derive a solution with a MILP solver by incorporating the overhead
of state movements into the constraints. In addition, there are three existing work
that are analogous to our work [3,10,13].

Shah et al. [13] studied how to process a single continuous query operator on
multiple shared-nothing machines. In this work, load imbalance is distinguished
into short-term imbalance and long-term imbalance. Load balancing is in charge
by an operator Flux that encapsulates adaptive partitioning and routing. To
reduce the state movements, Flux sorts the sites in descending order of load and
pairs them together, where load balance is realized by moving partitions around
the sites in each pair. However, the parallelism in Flux is fixed and the cost for
state movements has also not been quantified.

Nasir et al. [10] investigated the load balancing problem for stateless oper-
ators by applying the “power of two choices” approach. Their solution, namely
Partial Key Grouping (PKG), improves the performance by mapping each key
to two distinct substreams and forwarding each tuple to the less loaded of the
two substreams. This approach can not be applied directly to stateful operator,
because we need an extra operator to consolidate the partial results.

Gedik [3] proposed a partition scheme that is close to our solution. Stream
is split with a partition function 〈Ht,Hc〉, which is a hybrid of consistent hash
and explicit mapping, for multidimensional load balancing in stateful paralleliza-
tion. This strategy can be applied for dynamic load balancing, but it has two
drawbacks: (1) it has to reconstruct a new partition function after each process,
which introduces new overhead for processing latency; and (2) it will result in
expensive state migration since it uses a hash function to rebalance the load as
we addressed.

2 Stateful Load Balancing

2.1 Problem Statement

A streaming computation is usually organized as an operator graph [1]. Each
operator implements a bunch of predefined processing logic, such as join, aggre-
gate, filter, or user-defined functions. A stream s can be written as an opera-
tor pair (us, os), where us and os are the producer and consumer of it respec-
tively. At runtime the consumer o is parallelized into a number of instances
I = {o1, . . . , on}, where n ∈ N

+ is the parallelism. Stream s associates with
a key k, the domain of the partition key ku is split into p partitions with a
hash function H(Ku) : D → [1 . . . p], which separates s into non-overlapping
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substreams S = {s1, . . . , sp}, where p � n and p = O(n). If o is stateful, then
its processing state PS is also split into p partitions ps = {ps1, ps2, . . . , psp}. A
parallel processing of s is defined by the assignment F : S → I.

Stateful load balancing. For a stateful operator with key grouping, the num-
ber of tuples processed by each instance vary greatly if the distribution on the
key is skewed. It is inevitable to balance load for instances. We focus on load
balancing for a single operator o rather than the whole query graph. For conve-
nience of discussion, we suppose that operator o has a unique input stream s.
The assignment F changes at runtime so as to handle load variations. A state
partition psi should be moved to another instance if the allocation of substream
si has been changed. Therefore, the process of load balancing involves a lot of
state movements and we call it as stateful load balancing.

2.2 Minimum Cost Load Balancing

Decision on load balancing relies on statistics about data rate, load distribution,
and state distribution. Statistics are collected periodically over statistic windows
of length Δ. We use a histogram Yt = (y1t, y2t, . . . , ypt)T to record the load
distribution of s1 . . . sp in the t-th window, where yit, i = 1 . . . p, is the number
of tuples of si arrived in this window. Other statistics about s like the mean
ȳt and the variance var(Yt) of Yt can be derived accordingly. With Yt and an
assignment F1, we can measure the load imbalance and the number of state
movements for the t-th statistic window.

Load imbalance. Encoding the assignment F1 as a matrix A = [aij ]p×n,
where aij is a binary variable such that aij = 1 if substream si is assigned to
instance oj and aij = 0 otherwise. Since each substream only can be processed
by an instance, we have

∑n
j=1 aij = 1. Let Lt = (l1t, l2t, . . . , lnt)T be the load

vector for instances (o1, . . . , on) in the t-th window, then it is given by a linear
transformation Lt = AT Yt. If F1 is a balanced assignment, then AT Yt = l̄t ,
where l̄t = (l̄t, l̄t, . . . , l̄t)T and l̄t = 1

n

∑p
i=1 yit is the average load in the t-th

window.
Much work [13] defines the load imbalance in the t-th window as the difference

between the maximum and the average load of instances, i.e., maxi(lit)− l̄t. But
this value is insufficient to reflect the load distribution, which plays an essential
role in changing the assignment. Alternatively, we use the variance of load vector
Lt = (l1t, l2t, . . . , lnt)T to measure the load imbalance in the t-th window. That
is,

var(Lt) =
1
n

n∑

i=1

(lit − l̄t)2, (1)

where Lt = AT Yt, and l̄t is the mean of Lt, i.e., l̄t = E(Lt) = 1
n

∑n
i=1 lit.
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State movement. Consider an adaptation and F2 is a new assignment. A state
partition psi, i = 1 . . . p, will be moved to another instance if the allocations given
by two assignments are different, i.e., F1(si) �= F2(si). Let x = (x1, . . . , xp)T

be a vector of binary variables, where xi = 1 if F1(si) �= F2(si) and xi = 0
otherwise. Let d = (d1, . . . , dp)T be the state distribution at present, where di is
the number of tuples in psi. Then the number of state movements ψ(F1,F2) in
this load balancing is:

ψ(F1,F2) = x · d =
p∑

i=1

xidi (2)

Given a set of substreams S = {s1, . . . , sp} and a number of instances I =
{o1, . . . , on}, we consider a load balancing that replaces the current assignment
F1 : S → I with a new one F2. The decision of load balancing must rely on
statistics of historical data. Assuming we have a sequence of histograms Y =
(Y1, . . . , Ym), m ∈ N, over the latest m statistic windows. We have a sequence of
load vectors L = (L1, . . . , Lm), where the load vector Lj is given by Lj = AT Yj .
The overall imbalance over the statistic windows is �(F1) =

∑m
j=1 var(Lj). In

addition, the cost of state movements of replacing F1 with F2 is given by Eq. 2,
which quantifies the amount of communication required for approaching the load
balancing. Therefore, the stateful load balancing is to compute an assignment
that minimize both simultaneously. We denote this problem as Minimum-Cost-
Load-Balance (MCLB).

MCLB is a bi-objective optimization problem and it has been proved to be
NP-hard. It is apparent that the two objectives conflict with each other: (1)
to minimize ψ(F1,F2), one hopes to change the assignment as less as possible;
(2) to minimize �(F2) one needs more movements for which one can try more
possible plans so as to balance the load. Therefore we cannot compute a feasible
solution that minimizes both objectives simultaneously. Instead, we present two
approximate algorithms for MCLB.

3 Eager Load Balancing

The eager load balancing (ELB) algorithm balances load in each statistic window
and leverages heuristics to reduce state movements as many as possible. In ELB,
the objective of minimizing load imbalance is relaxed to a range [v, u], where v
and u define the lower and upper bounds of load for each instance. For this
relaxation, it is much easier to find a feasible assignment with less state move-
ments. In addition some substreams are being hot spots at runtime, which have
large volume of load and challenge load balancing. Consequently two heuristics
are leveraged by ELB: (1) distribute the hot spots as evenly as possible; (2) fit
the load of each instance into the range [v, u] and make it as close as possible to
u+v
2 . Furthermore, we assume that the load for each substream in any window

satisfy yik ≤ u−v
2 , which can be fulfilled by choosing a suitable value for p and

a partition function.
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Algorithm 1. Eager Load Balancing (ELB)
Input: The rurrent assignment F , Histogram Yt = (y1t, . . . , ypt)

T

Output: New assignment

1 Initialization: OI ← ∅, UI ← ∅, R ← ∅, PQ ← ∅ ;
2 /* Phase 1: preparing */

3 (l1t . . . lnt)
T ← AYt, w ← ∑n

j=1 ljt;

4 π ← � 2w
u+v �, l̄t ← w

π ;

5 o1 . . . on ← sort I in descending order of loads ;
6 if π > n then
7 on+1 . . . oπ ← initialize π − n instances with load of 0;

8 I ← I ∪ {on+1, . . . , oπ}
9 if π < n then

10 R ← oπ+1 . . . on ;
11 I ← I − R ;

12 OI ← all overloaded instances with load larger than l̄t;
13 UI ← I − OI;
14 /* Phase 2: identifying */

15 foreach instance oj in OI do

16 θ ← min{ljt − l̄t,
u−v

2 }, Sk ← the substreams of oj ;

17 while Sk �= ∅ do
18 si ← get the largest substream such that yit < θ ;
19 insert si into PQ;
20 ljt ← ljt − yit, θ ← θ − yit ;
21 Sk ← Sk − {si}

22 foreach substream si is assigned to an instance in R do
23 insert si into PQ;

24 /* Phase 3: reassigning */
25 while PQ is not empty do
26 si ← peek the substream with the largest load from PQ ;

27 oj ← get the least-loaded instance from UI ;

28 F(si) ← oj , ljt ← ljt + yit ;

29 if ljt ≥ u+v
2 then

30 UI ← UI − {oj}, OI ← OI + {oj} ;

31 return F ;

As shown in Algorithm 1, ELB includes three phases. In the first phase, we
first calculate the load vector Lt = (l1t, . . . , lnt) with the latest histogram Yt and
the current assignment F1. Let w be the overall load, then the average load is
l̄ = w

π , where π = 	 2w
u+v 
. If π > n, then π − n empty instances will be added

into I. If π < n, then n−π instances should be removed from I. To reduce state
movements, we pick the n − π least-loaded instances and keep them in a set R.
The substreams assigned to instances in R should be reassigned to the instances
in I −R. All instances in I are sorted in a descending order of loads, and we use
two sets OI and UI to keep track of the overloaded and underloaded instances
respectively. The assignments for substreams are only allowed to changed from
OI to UI, for which state movements reduce efficiently.

The second phase is to identify substreams that should be reassigned (Line
15–23). For an overloaded instance oj , a substream can be removed from it has
load at most ljt − l̄t. Since load for each substream is under u−v

2 , an identified
substream must has load under the threshold θ = min{ljt − l̄t,

u−v
2 }. Each time
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we identify the largest substream of load smaller than θ (Line 18–21) and insert
it to the priority queue PQ. The value of θ and load for oj should be updated
thereafter and then the search repeats until no substream of oj satisfying the
condition (Line 17–21). The substreams assigned to oj are also supposed to be
sorted in a descending order of load, and hence the search completes in one
traversal. Moreover, R is not empty if π < n, therefore the substreams assigned
to the instances in R should be inserted in to PQ as well (Line 22–23).

In the last phase (Line 19–26), we assign the identified substreams to the
underloaded instances in UI. The instances in UI are sorted in a descending
order of load. The assignment completes by repeating the first-fit procedure,
where each time we peek a substream si with the largest load from PQ and assign
it to the least-loaded instance oj ∈ UI that can hold it. If oj get overloaded,
then it will be removed from UI and added into OI.

4 Correlation-Based Algorithm

In contrast to ELB, we present an algorithm that balances load for every m,
m > 1, statistic windows. To reduce load imbalance, we compute an assignment
that fits for a sequence of histograms Y = (Y1, . . . , Ym) over m windows. The
overhead of state movements is amortized over m windows and it is negligible
if m is large enough. Therefore, we can ignore the overhead of state movement
and only focus on minimizing the load imbalance.

We are given an assignment F and a sequence of load vectors L =
{L1, . . . , Lm}. Since var(Lj) = 1

n

∑n
i=1 l2ij − l̄2j , the overall load imbalance can

be written:

m∑

j=1

var(Lj) =
m∑

j=1

( 1
n

n∑

i=1

l2ij − l̄2j
)

=
1
n

m∑

j=1

n∑

i=1

l2ij −
m∑

j=1

l̄2j (3)

Each substream si associates with a load series Xi = (yi1, . . . , yim). Xi can
be viewed as a discrete-time stochastic process Xi = {yit : t ∈ N

+}, where yit is
the number of tuples of si arrived in the t-th window. Let Si = {s1, . . . , sr} be
the substreams that is assigned to instance oi (1 ≤ i ≤ n), then S = ∪n

i=1Si and
Si ∩ Sz = ∅ if i �= z. Let Ni = X1 + · · · + Xr and ηi = E(Ni) =

∑|Si|
si∈Si

E(Xi),
then we have

n∑

i=1

var(Ni) =
1
m

n∑

i=1

m∑

j=1

l2ij −
n∑

i=1

η2
i . (4)

By some transformations of Eqs. (3) and (4), we can prove that
min

∑m
j=1 var(Lj) is equivalent to min

∑n
i=1 var(Ni). In addition, by studying

the variances var(Nk) = var(X1 + · · · + Xr) and var(X) = var(X1 + · · · + Xp),
we have

var(X) −
n∑

k=1

var(Nk) = 2
∑

Xi∈Sk,Xj∈Sz,k �=z

cov(Xi,Xj) (5)
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Algorithm 2. Correlation-based Load Balancing (CLB)
Input: Load series {X1, . . . , Xp}
Output: Assignment {S1, . . . , Sn}

1 Initialization: S1 ← {s1, . . . , sp}, r ← 1 ;
2 foreach substream si do
3 ωi ← 0 ;
4 foreach substream sj (j �= i) do
5 cov(Xi, Xj) ← E[XiXj ] − E[Xi]E[Xj ] ;
6 if cov(Xi, Xk) ≥ θ then
7 ωi ← ωi + cov(Xi, Xk) ;

8 while r ≤ n do
9 sk ← the substream with the maximum weight ωk ;

10 Sh ← get the set containing sk ;
11 foreach substream si of Sh do
12 if cov(Xk, Xi) ≤ θ then
13 Sh ← Sh − {si}, Sr ← Sr ∪ {si} ;
14 ωi ← 0;
15 foreach substream sj ∈ Sh do
16 ωj ← ωj − cov(Xi, Xj)

17 foreach substream sj ∈ Sr do
18 ωj ← ωj + cov(Xi, Xj)

19 if r < n then
20 r ← r + 1 ;
21 Sr ← ∅;
22 else
23 return; // already n subsets

The right component var(X) − ∑n
k=1 var(Nk) in Eq. (5) is denoted as cross

covariance, which counts the covariances of substreams that fall into different
subsets. Since var(X) is a constant, minimizing �(F) is equivalent to finding a
partition of S into subsets S1 . . . Sn that maximize var(X) − ∑n

k=1 var(Nk).
We construct a complete graph G = (V,E) from the load series X1 . . . Xp,

where a vertex vi ∈ V represents the load series Xi and the edge eij ∈ E
connecting vi and vj , vi, vj ∈ V , is assigned a weight 2cov(Xi,Xj). Let n = 2,
then max[var(X) − ∑n

k=1 var(Nk)] is equivalent to computing the Max-cut of
G. However, the Max-cut problem is NP-complete, and thus we present a greedy
solution, as shown in Algorithm2, in which each time we choose a substream sk

based on an alternative metric and split the set containing it to two subsets.
Given a threshold θ, 0 ≤ θ < 1, and a substream s1 ∈ S, we consider a split of

the set S into two subsets S1 and S2, where S1 keeps s1 and any substream si such
that cov(X1,Xi) ≥ θ and S2 includes others otherwise, i.e., S1 = {s1}∪{xi|xi ∈
S, cov(X1,Xi) < θ} and S2 = S−S1. Let ω1 be the contribution of o1 to the cross
covariance in this split, then ω1 =

∑
si∈S,i�=1 cov(X1,Xi), if cov(X1,Xi) ≥ θ.

Calculation of the covariance matrix Σ = [cov(Xi,Xj)]p×p is described by Line
2–7.

The set splitting proceeds in runs (Line 8–23). For each run we choose the
substream with the largest contribution to perform a set splitting rather than
maximizing the overall cross covariance, which is NP-complete as we showed
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earlier. Suppose that substream sk has the largest weight in the current run,
i.e., sk = max{wi|si, i = 1 . . . p}, then the set Sh containing it will be split into
two subsets Sh and Sr, where Sr is an empty set and each substream si such that
cov(Xk,Xi) ≥ θ will be move to Sr from Sk. Since ω changes as set splitting,
we should update its value for each substream of Sh and Sr to prepare the next
run (Line 15–18). Repeat this procedure until n sets are created.

5 Evaluation

We evaluated our algorithms with three metrics: (1) load imbalance var(Lt), (2)
state movements, and (3) processing latency. The processing latency measures
the time for processing each tuple. Based on this measurements, we can also cal-
culate the system throughput 1/avg, where avg is the average processing latency
for a stream of tuples. In the experiments, we compared ELB and CLB with
two existing solutions:

PKG also implements the key grouping but it was designed for stateless LB [10].
UHLB balances load with a universal hash function rather than the key group-
ing in our context. It returns h(t), where h : [p] → [n] is chosen at random from
a family of 2-universal hash functions.

Datasets. Two types of datasets, both real and synthetic, are used in this
evaluation.

Twitter stream. The real dataset consists of a collection of tweets extracted
from an interval around 29 h: Feb 27 15:24:12—Feb 28 20:47:34, 2013. There are
10,637,691 tweets and about 13.9 GB in total. Each tweet is viewed as a tuple
of JSON objects.

Synthetic stream. Two synthetic streams S1 and S2 are used to simulate the
fluctuation of data rate and the change of data distribution respectively. S1 and
S2 conform to a relational schema (ts, a1, a2), where ts is a Unix timestamp,
a1 is an integer falls into [1,100], and a2 is a string of words. The field a1 is
designated as the partition key on which S1 and S2 have been partitioned into
100 substreams. The partition keys of S1 and S2 follow the Gaussian and Zipf
distributions respectively, which are used to simulate various data skewness. The
means for Gaussian and Zipf are set as the same.

In addition, a Poisson process is used to control the data rates of S1 and S2. In
a Poisson process, tuples arrive sequentially and their inter-arrival times Zi are
exponentially distributed with a rate parameter λ : Prob{Zm ≤ τ} = 1 − e−λτ ,
where the parameter is λ = 10000.

5.1 Simulation Results

Experimental results are based on two hours simulation. In this experiment,
we implement a simple topology, as shown in Fig. 1, where the operator u is
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u o v

Fig. 1. A simple topology with 3
operators. The size of state of o is set to
one tenth of the data rate, ψ(o) = 1
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r(o).
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Fig. 2. Load imbalance with π = 10 and
1/f = 1

responsible for generating tuples or read data from Amazon S3. The operator v
serves as a sink for collecting the statistics for o. Operator o is used for evaluating
the tested algorithms. The length of a statistic window is set to 1 min and thus
we have 120 histograms Y = (Y1, . . . , Y120) for each stream in total. To compare
the load imbalance, the number of instances in the experiment is fixed.

Load imbalance with respect to data distribution—As we claimed earlier,
load imbalance is mainly caused by skewness of data. Therefore, we use S1 and
S2, have different distributions, to investigate the impact of data skewness. Since
S1 and S2 follow the same traffic model, i.e., they have approximately the same
data rates, the load imbalances are only determined by data skewness. Figure 2
shows the change of imbalance over time for CLB when we use 10 instances, i.e.,
n = 10. The results are similar for n = 5 and n = 15. The experiments on other
algorithms also show similar features, and thus we just take CLB as an example.

Let Yi and Y
′
i be the histograms for the i-th statistic windows of S1 and

S2 respectively, where Yi satisfies the normal distribution and Y
′
i satisfies the

Zipf distribution. The variance of Y
′
i is larger than that of Yi, although Y

′
i

and Yi have equal means. The imbalances over statistic windows are plot-
ted in Fig. 2, in which the parallelism n is 10 and 1/f = 1. We calculate the
mean and standard deviation of the imbalances. As we expected, the mean of
var(Li), i = 1 . . . 120, is 2.08983e+10, which is approximately equals to the mean
of var(L

′
i) (2.08325e+10). The standard deviations of var(Li) and var(L

′
i) are

6.76016e+08 and 7.92797e+08 respectively. Therefore, the fluctuation of var(Li)
is much severer than that of var(L

′
i). This is confirmed by the plots in Fig. 2. The

lines labeled “Gaussian-10” and “Zipf-10” in the figure capture the fluctuation
of imbalances var(Li) and var(L

′
i) of CLB on S1 and S2 respectively. The max-

imum and minimum imbalances occur in the line labeled “Zipf-10”. The range
between the maximum and minimum values on “Zipf-10” is colored with blue.
By looking at the figure, all points of var(Li) falls into the range colored with
blue and thus the change of var(Li) is much more moderate. This confirms that
data skewness has significant impact to load imbalance.

Performance comparison of various algorithms—We used the real dataset
to test the performance on load imbalance and state movements for each
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Fig. 3. Load imbalance over time.
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Table 1. Mean and standard deviation

1/f CLB ELB PKG UHLB

1 μ – 5.1E+4 3.1E+4 2.9E+4
δ – 1806.8 1018.8 770.4

24 μ 6.1E+4 – – –
δ 5133.7 – – –

Table 2. Processing latencies (ms)

Latency CLB ELB PKG UHLB

Max 1103.13 1109.51 1551.30 1505.13

Mean 0.76 0.73 0.92 1.01

Median 0.30 0.33 0.38 0.38

95% 1.12 0.68 1.70 1.89

algorithm. The results for n = 10 are plotted in Figs. 3 and 4. In general, as
we expected, UHLB and PKG beat our algorithms on load imbalance, but they
perform much worse on state movements. In terms of CLB, UHLB and PKG
reduce imbalance by at least an order of magnitude. The reason is apparent that
the primary objective of CLB is to minimize state movements rather than load
imbalance.

We have calculated the standard deviation of the imbalance var(Lt) for all
algorithms. In the experiments, the frequency of load balancing is set to 1/f =
24, i.e., there are 5 load balancing in total. Table 1 summarizes the mean μ
and standard deviation δ of imbalance var(Lt) of all algorithms. The average
percentage of state movements for CLB is 48.4% when 1/f = 24. The value drops
to 1.6% when we amortize them over the statistic windows.

By looking at Fig. 3, we can observe that ELB outperforms CLB on load
imbalance, which is determined by their optimization objective and hence justi-
fies the assertion we addressed earlier. CLB aims at minimizing the overall load
imbalance �(L) by greedily reducing the covariance. In contrast, ELB executes
load balancing eagerly at each statistic window. Figure 4 shows the comparison
of state movements. The left figure plots the percentage of movements for ELB,
UHLB, and PKG. By looking at the figure, it is apparent ELB has far less state
movement than UHLB and PKG. The average percentages of PKG, UHLB, and
ELB are 21.2%, 24.2%, and 14.5% respectively. In the right figure, we compared
the average percentages of PKG, UHLB, and ELB with the amortized percent-
age of CLB. As we expected the state movements of CLB is negligible comparing
to the other three algorithms.
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5.2 Processing Latency

We implemented the algorithms in Enorm [6,7], which extends Apache Storm
[1] by integrating the ability of dynamic reconfiguration at runtime [8]. The
experiments were conducted on Amazon’s EC2 with medium VM instances,
where each has 1.7 GB of RAM, moderate IO performance and 1 EC2 compute
unit. We evaluated the metric by explicitly scaling out an operator WordCounter
that counts the occurrence for each word every 1 min over the Twitter stream.
To exclude the interference from other factors, we fix the processing capacity
of each VM to 1000 tuples/s. The data rate of Twitter stream starts at 1000
tuples/s and linearly grows to 16,000 tuples/s, and we add one more instances
for the operator at a scale-out.

Processing latency with respect to data rate—Statistics of processing
latency is illustrated in Table 2, where 95% is the 95-th percentile. By examining
the 95-th percentile, we know that most tuples have processing latency less
than 1.89 ms. In contrast, a small portion of tuples have very high latencies. It
confirms that state movement indeed has significant impact to the processing
latency of tuples. As we can see from the table, the maximum latency reaches
up to 1.5 s. The processing latency is mainly due to stream buffering and replay.
In the implementation of load balancing, we adopt a pause-configuring-resume
procedure, and thus tuples from upstream operators will be buffered and then
replayed to downstream after the completion of the process.

By comparing the mean of processing latency, we can assert that our algo-
rithms outperform the existing solutions. In particular, CLB approaches the least
reduction of 17% and ELB reduces the mean of processing latency up to 50%.
To have better understanding of the processing latency, we calculated the ratio
μ1
μi

, where μ1 is the mean of processing latency of CLB when n = 1 and μ2 is the
mean of processing latency of any algorithm when n = i, i = 1 . . . 15. Figure 5
plots the ratio by varying the number n of instances. It is apparent that UHLB
and PKG fluctuate more severely than CLB and ELB.

Speedup of throughput—The speedup of throughput achieved by each algo-
rithm is illustrated in Fig. 6. In the figure, the line labeled “Ideal” represents
the theoretical speedup of scaling out the operator. The speedups for ELB and
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CLB are approximately linear to the parallelism. In contrast, PKG and UHLB
cannot approach linear speedups. The change of speedups for the latter two
algorithms show interesting features. By looking at the figure, we can observe
remarkable phase transition on the lines labeled “PKG” and “UHLB”. The two
lines can be divided into multiple stages, such as the ranges 3–5, 6–8, and 10–14.
The speedup improves slightly in a stage, but it shows a sudden jump at the
end of that stage. This phenomenon undoubtedly confirms the impact of load
balancing. During the execution of a load balancing, the incoming tuples are
temporarily buffered by the upstream operator. The buffered tuples would get
congested if there are too many state movements involved in the load balancing.
The upcoming tuples are delayed until the congested tuples have been processed
and then we can observe a sudden jump of the speedup.

We also observe that the speedup of CLB gradually deviate from the “Ideal”
line as we scale out the operator. As we can see from the figure, ELB, PKG and
UHLB outperform CLB when n = 15. Since the execution of load balancing is
infrequent, 1/f > 1, for CLB, load imbalance cannot be removed in time. The
overhead is too high for a single load balancing and this problem get worse when
we have more instances. Consequently, the throughput declines seriously due to
the load imbalance. It shows that the frequency f of load balancing is also very
important to throughput. We have to carefully choose the value for f .

6 Conclusion

We have shown that load balancing for stateful stream processing is a bi-objective
optimization problem. It is NP-hard and we proposed two approximate algo-
rithms, ELB and CLB, in which the objectives of minimizing load imbalance
and state movements are relaxed. The evaluation shows that our approaches
outperform the existing solutions in processing latency and throughput even
though them have higher load imbalance.
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