
A Framework for Structural Refinement of XML Keyword
Search

Qingsong Guo, Yongluan Zhou
University of Southern Denmark

{qguo, zhou}@imada.sdu.dk

ABSTRACT
In this paper, we develop a framework for querying XML data that
can take advantage of the strengths of both structured queries and
keyword queries. Basically, we refine a keyword query intelligently
into a number of tree patterns, from which the user can interac-
tively select the queries that match his query intention. This is
a challenging problem since most of possible structured queries
constructed from user-issued keywords are incompatible with the
structural constraints in the data and hence useless. Alternatively,
we extract a relation graph from the given XML document D,
which captures the corresponding structural constraints of user query.
We then transform the query refinement into a classical problem in
graph theory and hence take advantage of the existing research re-
sults on this problem.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Theory

Keywords
XML, Structural Refinement, Keyword Search, Tree Pattern

1. INTRODUCTION
XML has become a standard for representation and exchange of

data in a variety of applications. However, the complexity and het-
erogeneity make the retrieving information from XML documents
to be a challenging task. Thus, it attracts a lot of attentions from
both the DB and IR research communities [2].

The DB community mainly focused on designing structured query
languages, such as XPath/XQuery, and developing the correspond-
ing query processing techniques. Taking an XML bibliographic
record as an example, as shown in Fig. 1, the following XPath

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

query interests in the title of books published by Pearson Educa-
tion, //book[publisher = ‘Pearson Education’]/title. In gen-
eral, a structured query can be represented as a tree pattern [3],
as illustrated in Fig. 2, which is a rooted tree with edges denoting
the parent-child or ancestor-descendant relationship among nodes.
Hereafter, we will use tree patterns to represent structured queries
and use these two terms interchangeably. With structured query
languages, users can precisely specify their queries. However, it
requires users have good knowledge of the documents’ structure
and hence gives extra burdens.

On the contrary, the IR community interested in keyword search.
One can simply express the aforementioned query with a set of key-
words: “title of book published by Pearson Education”. Obviously,
it is less demanding on the users’ knowledge and skills. The major
downside of keyword query is that it fails to capture the structures
of XML documents and hence cannot precisely express one’s in-
terests. It typically return a mass of imprecise XML fragments that
match the issued keywords, from which users have to sort out use-
ful information that they interested.

To address the dilemma of choosing between keyword queries
and structured queries, we explore a new refinement framework
that integrates both approaches and get the best out of both worlds.
Our framework provides a keyword-based query and a mechan-
ics underneath that automatically refines the keywords query into a
number of tree patterns. These tree patterns are ranked according
to their relevance with the keyword query and could be executed
on demand to retrieve the results. In this way, users can precisely
retrieve data by selecting the structured queries to be executed.

To realize the above idea, many obstacles need to be overcome.
Firstly, an enormous amount of tree patterns could be constructed
from a set of keywords but only a minor part of them is compatible
with the structural constraints of the data. For instance, given a set
of keywords Q = (k1, k2, . . . , kn), we can construct nn−1 tree
patterns according to Cayley’s formula[1]. While only the compat-
ible patterns can return results and are useful, pruning the massive
number of incompatible patterns needs the structural information
of the data and hence may involve frequent and expensive data ac-
cess. Moreover, the tree pattern with the top score may not match
with the user’s query intention. It is preferable to present an in-
teractive refining framework that can return tree patterns on user’s
demand. This requires the algorithm to be able to progressively
produce structured queries in the order of their ranking scores.

Secondly, it is quite often that very few tree patterns can be gen-
erated if we only use the keywords in the query to construct the
tree patterns. It is highly possible for users to issue an ill-formed
keyword queries because of the lack of knowledge about the data.
Instead of repeatedly asking the user to try a different query, it is
more friendly to expand the initial query so as to generate more

bibliography

book

authorspublishers

author

@isbn

@book
title

@publisher

publisher

year

books

Pearson

Education
@author

name

Jennifer

Widom

book

978-0-13-

098043-4

Database systems -

the complete book

2002

publisher

Figure 1: Part of Bibliographic Records

book

dblp

title
publisher

“Pearson Education”

book

title
publisher

Pearson Education

dblp

Hector Garcia-

Molina

book

author pages@isbn

978-0-13-

098043-4

1119

Database systems -

the complete book

title year

2002

Pearson

Education

publisher

Jeffrey D.

Ullman

Jennifer

Widom

author author

book...book ...

Figure 2: Tree Pattern

compatible tree patterns to enrich user’s choices. We call this pro-
cess as structural query expansion.

Our framework addresses the above challenges and achieve those
desirable properties or features. In general, we extract the structural
constraints of the user-specified keywords from the data, which
forms a relation graph G. G is a weighted directed graph, and its
spanning rooted trees are taken as the desired tree patterns. Hence,
we transform the query refinement into a classical combinatorial
problem: computing the top-k minimum spanning rooted trees of a
directed graph.

Related Work. Many efforts were made to improve the precise-
ness of XML keyword query, such as the structural semantics like
lowest common ancestor (LCA) and smallest LCAs (SLCA) [11].
Some approaches, such as structural relevance feedback [5] and
natural language processing techniques [10], put the refinement a
step further to produce structured queries directly. But these meth-
ods are either inefficient or too complicated in practice. Petkova et
al. [7] proposed a more practical approach that can automatically
create structured queries for a given keyword query. It first con-
verts terms into target sets, such as “//a” and “//a[∼ ‘x’]”, and then
combines them into singletons. There are enormous combinations
but only a small portion are compatible patterns that consist with
the structural constraints of source data. Three operators are intro-
duced to prune the useless combinations, but this approach would
still suffer from serious performance problem.

2. XML QUERY REFINEMENT
In our context, we aim at refining the XML keyword query into

tree patterns. A tree pattern is a rooted tree [3], in which each
node can have various labels such as element tags and predicates
on attribute values and each edge is either a parent-child(“/”) or
ancestor-descendant(‘//”) relation.

A huge number of tree patterns can be constructed from a given
set of keywords. However, most of them do not consist with the
structure of a specific document D. To avoid flooding the users
with a number of meaningless tree patterns, we should only return
those that definitely have query results.

DEFINITION 1 (COMPATIBLE QUERY). Given an XML doc-
ument D and a tree pattern t, t is compatible with D if any edge
(a, b) of t satisfies the following conditions:
• a and b have matching nodes na and nb in D; and
• the relation between na and nb is either na/nb or na//nb.

Accordingly, our target is refining a given keyword query Q into
a set of tree patterns, T = {t1, t2, . . . , tk}, that are compatible
with structural constraints of data. The overall procedure of our
refining framework is as follows.

(1) Keyword query preprocessing: Traditional IR techniques,
such as word splitting, stop words deletion, word stemming,
acronym expansion, word merging, phrase segmentation, etc.,
are applied in advance to transform the initial query Q into a
set of refined terms K. For instance, the query in our previ-

ous example will be refined into {title, book, publish, Pear-
son Education}.

(2) Relation graph extraction: In this step, we extract the struc-
tural constraints among the terms of K which form the rela-
tion graph G. For a structural term in K, the matching node
is put into G directly. With regard to a content term, its par-
ent, which is a structural node, is taken into G instead. Each
edge of G associates with a weight, which is calculated ac-
cording to the weighting scheme.

(3) Relation graph reformation: It is possible for a relation
graph G that has no compatible tree patterns. Therefore, this
step is to reform G into a new graph that has at least one
compatible tree pattern.

(4) Query generation: Top-k compatible tree patterns are gen-
erated by incrementally computing the maximum spanning
rooted trees of the relation graph. Besides, other processes,
such as transitive error elimination, are carried out simulta-
neously.

Note that the structural query expansion can be accomplished by
repeating Step (3) and (4) on user’s demand.

3. RELATION GRAPH
Assuming we already have a set of refined terms K. We next

present the details of relation graph, such as extraction, weighting,
and the reformation of relation graph.

3.1 Data Model and Structural Summary
An XML document can be represented as a directed graph, as

illustrated in Fig. 1. Three types of nodes are of our concern, such
as element nodes, attribute nodes, and text nodes. These nodes can
be classified into two categories, where text nodes are referred to
as content nodes, while element nodes and attribute nodes are re-
ferred to as structural nodes. Accordingly, terms in K have match-
ing nodes from the document can be classified into two categories:
structural terms referring to those that match structural nodes and
content terms referring to those that match content nodes.

All structural nodes and their relations determines the structure
of the source data. The structure can be captured by a structural
summary, which is a directed graph S = (VS , ES), where VS and
ES consist of structural nodes and their relations respectively. A
relation graph is derived from S and it is defined as follow.

DEFINITION 2 (RELATION GRAPH). Given an XML document
D, with structural summary S = (VS , ES), and a set of refined
terms K = {k1, k2, . . . }, the relation graph G = (V,E) of K
corresponding to D is a directed graph such that: (1) V ⊆ VS; (2)
for each (u, v) ∈ E, either (u, v) ∈ ES or there is a path puv in
S.

Extracting Relation Graph. An edge of G is either “/” or ‘//”
relation. These relations can be extracted via auxiliary indexes or
by directly scanning the source data. A synonym thesaurus is useful
in this step, as it can be used to expand the query while a term ofK
has no matching nodes. Due to the flexibility of XML definition,
a tag may appear in two distinct elements with “//” relation, and
the same pair of tags may also appear in different places of the
document. The consequence is that loops and parallel edges would
involve in G. Thus, G should be modified to a simple directed
graph by removing the loops and combing the parallel edges. If
two parallel edges have different relation labels, the combined edge
will be marked as “//”.

3.2 Weighting the Relation Graph
In order to rank the output tree patterns, we introduce a novel

weighting mechanism that integrates the term frequencies (TF) and

the structural importances of XML elements. The structural im-
portances of nodes depend on theirs relative locations to the root
of the XML data. Apparently, nodes closer to the root are more
important in the sense that a query matching it can return more in-
formation than those matching nodes closer to the leaves. As we
described earlier, a node inG stands for the elements with the same
tag in data. Each edge in G represents a set of paths in the XML
data, and all parallel edges are combined into a single edge, thus
its weight can be measured by the cumulative probability of all in-
volved paths.

To capture the importances of different nodes, we introduce a
probabilistic XML model [6], in which elements within D are not
deterministic. Instead, each element y associates with a probabil-
ity Prob(y), which is a conditional probability with regard to its
parent element. It can be calculated as follows.

(1) The root r ofD is given a probability of 1, i.e. Prob(r) = 1.
(2) Element y has a unique path from the root. Suppose pry

is the only path from r to node y and x is the preceding node of y.
Then, Prob(y) can be calculated by applying Bayes’ formula

Prob(y|x) = Prob(x|y) ∗ Prob(y)
Prob(x)

. (1)

Prob(y|x) = 1
k

, where k is the number of children of x. As y has a
unique parent node x, xmust exist when y exists, i.e. Prob(x|y) =
1. So we have Prob(y) = Prob(y|x) ∗Prob(x). Prob(y) can be
calculated by applying the formula recursively.

(3) Element y has more than one paths. Suppose there are h
paths from r to y, {pi|1 ≤ i ≤ ph, h ≥ 2}. Then the probability
of y is

Prob(y) =

h∑
i=1

Prob(yi), (2)

where Prob(yi) is the probability of y appears on the path pi and
can be computed according (1).

By applying formula (1) and (2), we can calculate the proba-
bility for each element in D and then the weight of each edge
in the relation graph will be calculated as the sum of the proba-
bilities for all its corresponding arcs (or paths) in the document.
In a graph modeled XML data, there may exist more than one
arcs (or paths) between a pair of elements. For instance, assum-
ing x/y and c1//ch are two edges in G, where there are m arcs
{ei|ei = xi → yi, 1 ≤ i ≤ m} and n paths {pi|pi = c0 → · · · →
ch, 1 ≤ i ≤ n} in the document corresponding to them respec-
tively. Then, the weight of x/y is ω(x/y) =

∑m
i=1 Prob(ei) =∑m

i=1 Prob(yi|xi), where Prob(yi|xi) is the probability of arc
xi → yi as explained in formula 1. Similarly, ω(ch//c1) =∑n

i=1 Prob(pi), where Prob(pi) is the product of the probabili-
ties of all the arcs on path pi. Suppose pi = 〈c1, c2, . . . , ch−1, ch〉.
Then, Prob(pi) = Prob(ch|ch−1, . . . , c1) =

∏h−1
i=1 Prob(ci+1|ci).

4. SPANNING ROOTED TREE
A directed graph G = (V,E) consists of a set of vertices V =
{v1, v2, . . . , vn} and a set of directed edges E. Each edge in E is
an ordered vertices pair (vi, vj), vi, vj ∈ V . A path puv , denoted
as 〈u, . . . , v〉, is a sequence of edges from u to v in G. A path
is simple if all vertices are distinct and it is a cycle if u=v. G is
strongly connected if there is a path between any pair of vertices
in V . G is weakly connected while its underlying graph U(G) is a
connected graph.

4.1 Sufficient and Necessary Condition for the
Existence of SRT

A spanning rooted tree (SRT) is a spanning subgraph ofG(V,E)
which has a root such that there is a unique path directed from the

...

...

(a) Components (b) SRDG

1

6

5

4 3

2

1

6

5

4 3

2

Node

New Relation

Component

Sub-SRDG
1C 2C hC

2l1l hl

0l

Figure 3: Relation Graph Reformation

root to each node. The exact number of SRTs of G can be calcu-
lated with Laplacian Matrix and Matrix-tree theorem [9].

To guarantee that each query has at least one matched tree pat-
tern, we give a sufficient condition for the existence of SRT. We
will perform a reformation on the relation graph when it does not
satisfied the sufficient condition. Furthermore, we also proposed a
necessary condition, which indicates a reformation with the mini-
mum cost. Both conditions are promised by quasi-strong connec-
tivity

DEFINITION 3 (QUASI-STRONG CONNECTIVITY). A directed
graph G is quasi-strongly connected if, for any pair of distinct ver-
tices u and v in G, there are two paths direct to u and v, respec-
tively, which start at the same vertex w, where w could be u or
v.

Suppose that G has a SRT T , then there should be a path within
G that is directed from the root of T to any other vertices. It shows
that quasi-strong connectivity is a necessary condition for the ex-
istence of SRT in G. Quasi strong-connectivity is also a sufficient
condition for the existence of SRT, which is gave by following the-
orem. The detailed proof is omitted here.

THEOREM 1. A directed graph G has spanning rooted tree if
and only if it is quasi-strongly connected.

4.2 Reforming the Relation Graph
The relation graph reformation is conducted according to the

quasi-strong connectivity. We focus on a specific type of quasi-
strongly connected graph, called as single root directed graph (SRDG).
A directed graph is called SRDG if it has at most one vertex v that
d+(v) = 0 and its underlying graph is connected.

Apparently, a SRDG can be transformed into a directed acyclic
graph G′ with a single root by collapsing each cycle into a pseudo
vertex. There is a path directs away from the root to any other ver-
tices in G′, thus it satisfies the quasi-strong connectivity property.

The reformation of relation graphG can be completed in follow-
ing two steps: (1) transforming each weakly connected component
to a SRDG; (2) connecting all the sub-SRDGs to an integral SRDG
by adding the lowest common ancestor of the roots of these sub-
SRDG components and corresponding edges.

Let C = {C1, . . . , Ch} be the connected components of U(G),
and vij , 1 ≤ i ≤ h and 1 ≤ j ≤ k, be a vertex of ci that has no
incident edge. Let li = lca(vi1, . . . , vik) be the lowest common
ancestor of all these vertices. The reforming on a single component
proceeds simply by adding li toCi. Then, li is the root of the newly
formed SRDG component.

Suppose l0 is the lowest common ancestor of those roots, i.e.
l0 = lca(l1, l2, . . . , lk). We then repeat the above process and
combine all components to a single SRDG by adding l0 as the new
root. The reforming process is illustrated in Fig. 3. Obviously, there
is at least one path to any other node from l0, and hence the new
created graph is definitely a SRDG. Furthermore, the XML data
has a unique root, which is an ancestor of all other nodes, thus all
these nodes, l0 to lk, can be found. It guarantees that any relation
graph can be transformed to a SRDG.

5. INCREMENTAL QUERY GENERATION

5.1 Tree Patterns Generation
Best queries generation: Tree patterns generation is based on

the algorithm for computing the k-best SRTs. Tarjan described an
efficient implementation for generating maximum SRT (MSRT) in
time complexity of O(m · logn) [8], where n and m are the num-
ber of vertices and edges of the graph respectively. The essence of
MSRT is to build a maximal critical graphM . M initially contains
all vertices of G but without any edges. The task is accomplished
by alternately expanding and collapsing M . The expanding rou-
tine continually chooses and adds the incident edge with maximum
weight for an unvisited vertex into M . If a cycle Si emerges, then
it will be collapsed to a pseudo vertex un+i. Then, edges directs
to a vertex in Si from outside are redirected to un+i and with their
weights modified accordingly. After finite repetitions of the above
procedure, a critical graphM is constructed. Choosing an incident
edge with the minimum weights to break each circle, and hence the
MSRT obtained.

Suppose that the MSRT subjects to two constraints Y and Z
(Y ∩ Z = ∅), where Y and Z are the set of edges that should be
included in and should be excluded from the solutions respectively.
Furthermore, let BEST (G,Y, Z) denote the MSRT. Assume H is
a subset of E − Y and each of its edges shares endpoint with an
edge of Y , i.e. H = {ei|τ(ei) = τ(yi), ei ∈ E − Y ∧ yi ∈ Y }.
The constraints can be easily fulfilled by removing all edges of Z
and H from G while running the MSRT algorithm. The remaining
graph is called restricted graph, which is denoted as GY,Z .

Top-k queries generation: The algorithm to generate k-best
MSRT is based on a routine of finding an SRT whose score is next
to that of MSRT and such an SRT is denoted as NSRT. Obviously,
MSRT has at least one edge that does not exist in NSRT. Therefore,
if MSRT has n − 1 edges, we can derive the NSRT by n − 1 iter-
ations. Within each iteration, we pick one edge e from the MSRT
and run the MSRT algorithm on the graph without considering e.
This will produce n−1 SRTs and the one with the best score among
them is the NSRT. A previous study [4] shows that this procedure
can be optimized into a single iteration.

SupposeA is the MSRT ofGY,Z andAi is the MSRT ofGY,Z∪fi ,
where fi is the i-th edge ofA. Suppose thatAh is the solution with
the maximum total weights among {A1, . . . , An−1}, and we say
that fh is the edge that leads to NSRT. Clearly, Ah is the spanning
rooted tree next to A. A straightforward way to obtain Ah is by
exhaustedly enumerating each Ai (1 ≤ i ≤ n − 1), which re-
quires O(n) MSRT computations. In [4], Camerini et al. devised
an efficient way to get NSRT with complexity ofO(m · logn). Es-
sentially, it tries to find fh within a single MSRT computation. The
algorithm to find fh is denoted as NEXT (G,Y, Z,A).

LetAj (1 ≤ j ≤ k) denote the j-th MSRT ofGY,Z , whereA1 =
A. Suppose that we have already obtained A1, A2, . . . , Aj−1, 1 <
j < k. The remaining MSRTs are partitioned into j − 1 dis-
joint sets, P j−1

i = {Ah : j ≤ h ≤ k;Y j−1
i ⊆ Ah ⊆ E −

Zj−1
i },1 ≤ i < j. Let b be the edge that leads to Aj . Then, Aj is

either the MSRT of G
Y

j−1
i ,Z

j−1
i ∪f or G

Y
j−1
i ∪f,Zj−1

i
. The k-best

MSRTs can be generated by alternatively using BEST (G,Y, Z)
and NEXT (G,Y, Z,A), which is based on the fact that the next
solution either will include f or will not include f . All compatible
SRTs can be obtained by setting k to∞.

5.2 Eliminating Incompatible SRTs
Although each edge in G is compatible with the structural con-

straints of data, a SRT generated from Gmay still be incompatible.
For example, as shown in Fig. 4, (a, b) and (b, c) are two edges of

a

b

c

l

(b)

a

b

c

l

(d)

a
b

c

l

(c)

a
b

c

(a)

a b c

l

(e)

Figure 4: Transitive Errors Elimination

G, but b in two edges refer to different nodes in XML document. A
relation a//c can be derived fromG, but it is incompatible with the
data. This error, called transitive error, is caused by the ambiguity
of b and the transitivity property of relations.

Any tree pattern containing both (a, b) and (b, c) is incompatible
with the data. Transitive error detection can be incorporated into
the SRTs generation. Before generating the queries, we find out all
adjacent edge pairs that may incur transitive errors and each of them
can be represented as a triplet τ = {τi|τi = 〈ai, bi, ci〉}. When an
SRT is generated, we just need to check whether it contains a pair
of edges involved in a transitive error triplet τi. To be noted that
there could be no SRTs left after the error elimination, for instance,
the relation graph shown in Fig. 4(a) does not contain any SRT
without transitive error. Therefore, we will add some additional
relations into G to guarantee there is at least a SRTs.

Example. Fig. 4 illustrates an example on transitive error elim-
ination, which just contains one transitive error component. Edges
between the lowest common ancestor l and the other nodes, i.e.
(l, a), (l, b), and (l, c), are added into the original relation graph
(Fig. 4(a)), which is transformed to a new graph (Fig. 4(b)). There
are three spanning trees that have no transitive error as shown in
Fig. 4(c), 4(d), 4(e) respectively. Therefore, no SRT of the graph
shown in Fig. 4(d) contains (a, b) and (b, c) simultaneously. By
performing top-k query generation, SRTs like Fig. 4(e) and 4(f)
would be generated from the graph in Fig. 4(d).

6. CONCLUSION
In this paper, we proposed a novel framework for structural re-

finement of XML keyword search. Our framework aims at pro-
viding an automatic mechanism for refining XML keyword queries
into compatible tree patterns. We have transformed the structured
query generation problem into a classical combinatorial optimiza-
tion problem, i.e. computing the k-best MSRT from the relation
graph composed by the querying terms.

7. REFERENCES
[1] M. Aigner and G. M. Ziegler. Proofs from THE BOOK (4th Edition).

Springer, 2009.
[2] S. Amer-Yahia and et al. Report on the DB/IR Panel at SIGMOD

2005. SIGMOD Record, 34(4):71–74, 2005.
[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic Twig Joins:

Optimal XML Pattern Matching. SIGMOD, 2002.
[4] P. M. Camerini, L. Fratta, and F. Maffioli. The k best spanning

arborescences of a network. Networks, 10(2):91–110, 1980.
[5] L. Hlaoua and M. Boughanem. Structural Relevance Feedback in

XML Retrieval. FQAS, pages 168–178, 2009.
[6] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic Data in XML.

VLDB, pages 646–657, 2002.
[7] D. Petkova, W. B. Croft, and Y. Diao. Refining Keyword Queries for

XML Retrieval by Combining Content and Structure. ECIR, 2009.
[8] R. E. Tarjan. Finding Optimum Branchings. Networks, 7(1):25–35,

1977.
[9] W. T. Tutte and Nash-Williams. Graph Theory. Cambridge

University Press, Cambridge, revised. edition, 2001.
[10] A. Woodley and S. Geva. NLPX - An XML-IR System with a

Natural Language Interface. ADCS, pages 71–74, 2004.
[11] Y. Xu and Y. Papakonstantinou. Efficient keyword search for smallest

LCAs in XML databases. SIGMOD, 2005.

